SIDC05D60C6

Fast switching diode chip in EMCON 3 -Technology

FEATURES:

- 600V EMCON 3 technology $70 \mu \mathrm{~m}$ chip
- soft, fast switching
- low reverse recovery charge
- small temperature coefficient

This chip is used for:

- power module
- discrete components

Applications:

- drives
- white goods
- resonant applications

Chip Type	$\mathbf{V}_{\mathbf{R}}$	$\mathbf{I}_{\mathbf{F}}$	Die Size	Package
SIDC05D60C6	600 V	15 A	$2.37 \times 1.9 \mathrm{~mm}^{2}$	sawn on foil

MECHANICAL PARAMETER:

Raster size	2.37×1.9	mm^{2}
Area total / active	4.5 / 2.88	
Anode pad size	1.95×1.48	
Thickness	70	$\mu \mathrm{m}$
Wafer size	150	mm
Flat position	180	deg
Max. possible chips per wafer	3276 pcs	
Passivation frontside	Photoimide	
Anode metallization	3200 nm AISiCu	
Cathode metallization	Ni Ag -system suitable for epoxy and soft solder die bonding	
Die bond	electrically conductive glue or solder	
Wire bond	Al, $\leq 500 \mu \mathrm{~m}$	
Reject ink dot size	$\varnothing 0.65 \mathrm{~mm} ; \max 1.2 \mathrm{~mm}$	
Recommended storage environment	store in original container, in dry nitrogen, <6 month at an ambient temperature of $23^{\circ} \mathrm{C}$	

SIDC05D60C6

Maximum Ratings

Parameter	Symbol	Condition	Value	Unit
Repetitive peak reverse voltage	$V_{\text {RRM }}$		600	V
Continuous forward current limited by $\mathrm{T}_{\text {jmax }}$	I_{F}		${ }^{1)}$	
Maximum repetitive forward current limited by $\mathrm{T}_{\text {jmax }}$	$I_{\text {FRM }}$		30	A
Operating junction and storage temperature	$T_{\mathrm{j}}, T_{\text {stg }}$		$-40 \ldots+175$	${ }^{\circ} \mathrm{C}$

${ }^{1)}$ depending on thermal properties of assembly

Static Electrical Characteristics (tested on chip), $T_{\mathrm{j}}=25^{\circ} \mathrm{C}$, unless otherwise specified

Parameter	Symbol	Conditions		Value			Unit
			min.	Typ.	max.		
Reverse leakage current	I_{R}	$V_{R}=600 \mathrm{~V}$	$T_{j}=25^{\circ} \mathrm{C}$			27	$\mu \mathrm{~A}$
Cathode-Anode breakdown Voltage	V_{Br}	$I_{R}=0.25 \mathrm{~mA}$	$T_{j}=25^{\circ} \mathrm{C}$	600			V
Forward voltage drop	V_{F}	$I_{\mathrm{F}}=15 \mathrm{~A}$	$T_{j}=25^{\circ} \mathrm{C}$	1.25	1.6	1.95	V

Dynamic Electrical Characteristics (verified by design/characterization), inductive load

Parameter	Symbol	Conditions		Value ${ }^{2)}$			Unit
				min.	Typ.	max.	
Peak reverse recovery current	$I_{\text {RM }}$	$\begin{aligned} & \hline I_{F}=15 \mathrm{~A} \\ & d i / d t=1600 \mathrm{~A} / \mu \mathrm{s} \\ & V_{R}=300 \mathrm{~V} \\ & V_{G E}=-15 \mathrm{~V} \end{aligned}$	$\begin{gathered} T_{j}=25^{\circ} \mathrm{C} \\ T_{j}=125{ }^{\circ} \mathrm{C} \\ T_{j}=150{ }^{\circ} \mathrm{C} \end{gathered}$		$\begin{aligned} & 23.0 \\ & 25.0 \\ & 26.0 \end{aligned}$		A
Recovered charge	Q_{r}	$\begin{aligned} & \hline I_{F}=15 \mathrm{~A} \\ & d i / d t=1600 \mathrm{~A} / \mu \mathrm{s} \\ & V_{R}=300 \mathrm{~V} \\ & V_{G E}=-15 \mathrm{~V} \end{aligned}$	$\begin{gathered} T_{j}=25^{\circ} \mathrm{C} \\ T_{j}=125{ }^{\circ} \mathrm{C} \\ T_{j}=150{ }^{\circ} \mathrm{C} \end{gathered}$		$\begin{aligned} & 0.80 \\ & 1.40 \\ & 1.70 \end{aligned}$		$\mu \mathrm{C}$
Reverse recovery energy	$E_{\text {rec }}$	$\begin{aligned} & \hline I_{F}=15 \mathrm{~A} \\ & d i / d t=1600 \mathrm{~A} / \mu \mathrm{s} \\ & V_{R}=300 \mathrm{~V} \\ & V_{G E}=-15 \mathrm{~V} \end{aligned}$	$\begin{gathered} T_{j}=25^{\circ} \mathrm{C} \\ T_{j}=125{ }^{\circ} \mathrm{C} \\ T_{j}=150{ }^{\circ} \mathrm{C} \end{gathered}$		$\begin{aligned} & 0.16 \\ & 0.28 \\ & 0.37 \end{aligned}$		mJ

[^0]
SIDC05D60C6

CHIP DRAWING:

$$
\text { Die-Size } 2370 \text { um } \times 1900 \text { um }
$$

15A Diskret ,active area $2,88 \mathrm{~mm} 2$

SIDC05D60C6

FURTHER ELECTRICAL CHARACTERISTICS:

This chip data sheet refers to the device data sheet

FS15R06XE3

Description:

AQL 0,65 for visual inspection according to failure catalog
Electrostatic Discharge Sensitive Device according to MIL-STD 883
Test-Normen Villach/Prüffeld

Published by Infineon Technologies AG
81726 München, Germany
© Infineon Technologies AG 2006.
All Rights Reserved.

Attention please!

The information herein is given to describe certain components and shall not be considered as warranted characteristics.

Terms of delivery and rights to technical change reserved.
We hereby disclaim any and all warranties, including but not limited to warranties of non-infringement, regarding circuits, descriptions and charts stated herein.

Infineon Technologies is an approved CECC manufacturer.

Information

For further information on technology, delivery terms and conditions and prices please contact your nearest Infineon Technologies Office in Germany or our Infineon Technologies Representatives world-wide (see address list).

Warnings

Due to technical requirements components may contain dangerous substances. For information on the types in question please contact your nearest Infineon Technologies Office.

Infineon Technologies components may only be used in life-support devices or systems with the express written approval of Infineon Technologies, if a failure of such components can reasonably be expected to cause the failure of that life-support device or system, or to affect the safety or effectiveness of that device or system. Life support devices or systems are intended to be implanted in the human body, or to support and / or maintain and sustain and / or protect human life. If they fail, it is reasonable to assume that the health of the user or other persons may be endangered.

[^0]: ${ }^{2)}$ values also influenced by parasitic L-and C-in measurement and package.

