

800V, 29A, 0.21Ω Max, t_{rr} ≤370ns

N-Channel FREDFET

POWER MOS 8° is a high speed, high voltage N-channel switch-mode power MOSFET. This 'FREDFET' version has a drain-source (body) diode that has been optimized for high reliability in ZVS phase shifted bridge and other circuits through reduced t_{rr} , soft recovery, and high recovery dv/dt capability. Low gate charge, high gain, and a greatly reduced ratio of C_{rss}/C_{iss} result in excellent niose immunity and low switching loss. The intrinsic gate resistance and capacitance of the poly-silicon gate structure help control di/dt during switching, resulting in low EMI and reliable paralleling, even when switching at very high frequency.

FEATURES

- · Fast switching with low EMI
- · Low trr for high reliability
- Ultra low C_{rss} for improved noise immunity
- · Low gate charge
- · Avalanche energy rated
- RoHS compliant

TYPICAL APPLICATIONS

- · ZVS phase shifted and other full full bridge
- · Half bridge
- · PFC and other boost converter
- Buck converter
- · Single and two switch forward
- Flyback

Absolute Maximum Ratings

Symbol	Parameter	Ratings	Unit
L	Continuous Drain Current @ T _C = 25°C	31	
D 'D	Continuous Drain Current @ T _C = 100°C	19	Α
I _{DM}	Pulsed Drain Current ¹	173	
V _{GS}	Gate-Source Voltage	±30	V
E _{AS}	Single Pulse Avalanche Energy ²	1979	mJ
I _{AR}	Avalanche Current, Repetitive or Non-Repetitive	24	Α

Thermal and Mechanical Characteristics

Symbol	Characteristic	Min	Тур	Max	Unit	
P _D	Total Power Dissipation @ T _C = 25°C			543	W	
R _{0JC}	Junction to Case Thermal Resistance			0.23	0.23 °C/W	
R _{ecs}	Case to Sink Thermal Resistance, Flat, Greased Surface		0.15			
T _J ,T _{STG}	Operating and Storage Junction Temperature Range	-55		150	°C	
V _{Isolation}	RMS Voltage (50-60hHz Sinusoidal Wavefomr from Terminals to Mounting Base for 1 Min.)	2500			V	
W _T	Package Weight		1.03		oz	
			29.2		g	
Torque	T			10	in·lbf	
	Terminals and Mounting Screws.			1.1	N⋅m	

Symbol	Parameter	Test Conditions	Min	Тур	Max	Unit
V _{BR(DSS)}	Drain-Source Breakdown Voltage	$V_{GS} = 0V, I_{D} = 250\mu A$	800			V
$\Delta V_{BR(DSS)} / \Delta T_{J}$	Breakdown Voltage Temperature Coefficient	Reference to 25°C, I _D = 250μ/	Α	1.41		V/°C
R _{DS(on)}	Drain-Source On Resistance ³	$V_{GS} = 10V, I_{D} = 24A$		0.19	0.21	Ω
V _{GS(th)}	Gate-Source Threshold Voltage	V = V = 2.5mA	2.5	4	5	V
$\Delta V_{GS(th)} / \Delta T_{J}$	Threshold Voltage Temperature Coefficient	$V_{GS} = V_{DS}, I_D = 2.5 \text{mA}$		-10		mV/°C
	Zero Gate Voltage Drain Current	V _{DS} = 800V T _J = 25°C			250	μA
DSS		$V_{GS} = 0V$ $T_J = 125^{\circ}C$			1000] μΑ
I _{GSS}	Gate-Source Leakage Current	V _{GS} = ±30V			±100	nA

Dynamic Characteristics

$T_{.l} = 25^{\circ}C$ unless otherwise specified

ij ze e umete emerme						
Symbol	Parameter	Test Conditions Min		Тур	Max	Unit
g _{fs}	Forward Transconductance	$V_{DS} = 50V, I_D = 24A$		43		S
C _{iss}	Input Capacitance	V - 0V V - 05V		9326		
C _{rss}	Reverse Transfer Capacitance	V _{GS} = 0V, V _{DS} = 25V f = 1MHz		159		
C _{oss}	Output Capacitance			927		
C _{o(cr)} ⁴	Effective Output Capacitance, Charge Related	V = 0V V = 0V40 522V		438		pF
C _{o(er)} 5	Effective Output Capacitance, Energy Related	V _{GS} = 0V, V _{DS} = 0V to 533V		217		
Q _g	Total Gate Charge	V 04:40V I 044		303		
Q _{gs}	Gate-Source Charge	$V_{GS} = 0 \text{ to } 10V, I_{D} = 24A,$		51		nC
Q_{gd}	Gate-Drain Charge	$V_{DS} = 400V$		155		
t _{d(on)}	Turn-On Delay Time	Resistive Switching		53		
t _r	Current Rise Time	V_{DD} = 533V, I_{D} = 24A		76		ne
t _{d(off)}	Turn-Off Delay Time	$R_{G} = 2.2\Omega^{\textcircled{6}}, V_{GG} = 15V$		231		ns
t _f	Current Fall Time			67		

Source-Drain Diode Characteristics

Symbol	Parameter	Test Conditions		Min	Тур	Max	Unit
I _s	Continuous Source Current (Body Diode)	MOSFET symbol showing the integral reverse p-n junction diode (body diode)				31	A
I _{SM}	Pulsed Source Current (Body Diode) ^D		SUPPLIES S			173	ζ
V _{SD}	Diode Forward Voltage	I _{SD} = 24A, T _J = 25°C, V _{GS} = 0V				1.2	V
t _{rr}	Reverse Recovery Time	$T_{J} = 25^{\circ}C$ $T_{J} = 125^{\circ}C$ $T_{J} = 125^{\circ}C$ $T_{J} = 25^{\circ}C$ $T_{J} = 25^{\circ}C$ $T_{J} = 125^{\circ}C$ $T_{J} = 25^{\circ}C$ $T_{J} = 25^{\circ}C$ $T_{J} = 125^{\circ}C$	T _J = 25°C			370	ns
rr			T _J = 125°C			710	113
Q _{rr}	Reverse Recovery Charge		T _J = 25°C		1.91		
~rr			T _J = 125°C		5.18		μC
1	Reverse Recovery Current		T _J = 25°C		12		Α
'rrm				18		^	
dv/dt	Peak Recovery dv/dt	I _{SD} ≤ 24A, di/dt ≤1000A/μs, V _{DD} = 100V, T _J = 125°C				25	V/ns

- Repetitive Rating: Pulse width and case temperature limited by maximum junction temperature.
- 2 Starting at $T_{,I} = 25^{\circ}C$, L = 6.9mH, $R_{,G} = 25\Omega$, $I_{,AS} = 24A$.
- (3) Pulse test: Pulse Width < 380µs, duty cycle < 2%.
- (4) $C_{o(cr)}$ is defined as a fixed capacitance with the same stored charge as C_{OSS} with V_{DS} = 67% of $V_{(BR)DSS}$. (5) $C_{o(er)}$ is defined as a fixed capacitance with the same stored energy as C_{OSS} with V_{DS} = 67% of $V_{(BR)DSS}$. To calculate $C_{o(er)}$ for any value of V_{DS} less than $V_{(BR)DSS}$, use this equation: $C_{o(er)}$ = -8.27E-7/ V_{DS} ^2 + 1.01E-7/ V_{DS} + 1.43E-10.
- 6 R_G is external gate resistance, not including internal gate resistance or gate driver impedance. (MIC4452)

Microsemi reserves the right to change, without notice, the specifications and information contained herein.

_{DS} = 480V

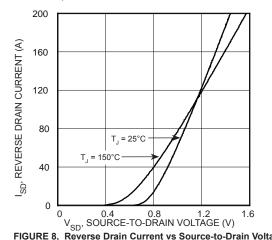
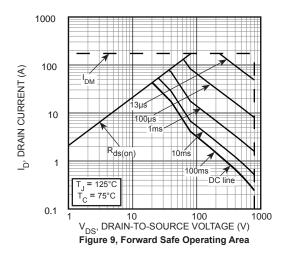
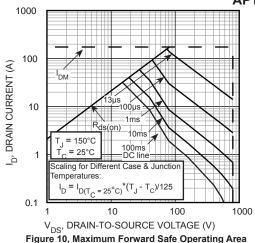
 $\mathbf{Q_g}, \text{TOTAL GATE CHARGE (nC)}$ FIGURE 7, Gate Charge vs Gate-to-Source Voltage

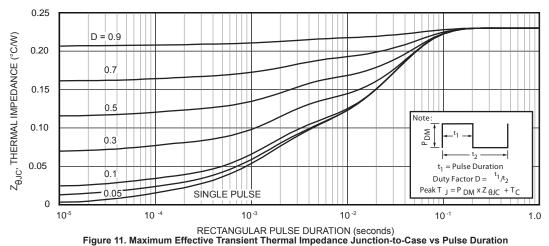
8

6

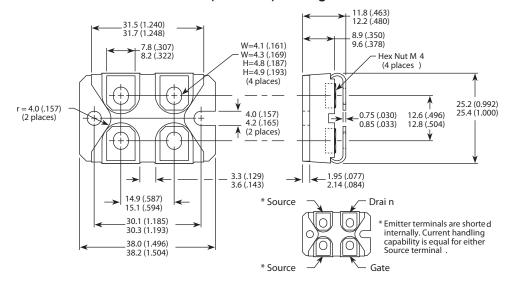
2

0


FIGURE 8, Reverse Drain Current vs Source-to-Drain Voltage

APT29F80J


35

SOT-227 (ISOTOP®) Package Outline

