¢
(3

YPRESS

P EREFECRNM

CY3280-CPM1 CapSense® Plus Module

Development Kit Guide

Doc. # 001-51922 Rev. *B

Cypress Semiconductor
198 Champion Court

San Jose, CA 95134-1709
Phone (USA): 800.858.1810
Phone (Intnl): 408.943.2600
http://www.cypress.com

+] Feedback

http://www.cypress.com
http://ccc01.opinionlab.com/o.asp?id=wRiLHxlo&prev=docurate_001-51922_pdf_p_1

Copyrights 7 CYPRESk

Copyrights

© Cypress Semiconductor Corporation, 2009-2011. The information contained herein is subject to change without notice.
Cypress Semiconductor Corporation assumes no responsibility for the use of any circuitry other than circuitry embodied in a
Cypress product. Nor does it convey or imply any license under patent or other rights. Cypress products are not warranted
nor intended to be used for medical, life support, life saving, critical control or safety applications, unless pursuant to an
express written agreement with Cypress. Furthermore, Cypress does not authorize its products for use as critical components
in life-support systems where a malfunction or failure may reasonably be expected to result in significant injury to the user.
The inclusion of Cypress products in life-support systems application implies that the manufacturer assumes all risk of such
use and in doing so indemnifies Cypress against all charges.

Any Source Code (software and/or firmware) is owned by Cypress Semiconductor Corporation (Cypress) and is protected by
and subject to worldwide patent protection (United States and foreign), United States copyright laws and international treaty
provisions. Cypress hereby grants to licensee a personal, non-exclusive, non-transferable license to copy, use, modify, create
derivative works of, and compile the Cypress Source Code and derivative works for the sole purpose of creating custom soft-
ware and or firmware in support of licensee product to be used only in conjunction with a Cypress integrated circuit as speci-
fied in the applicable agreement. Any reproduction, modification, translation, compilation, or representation of this Source
Code except as specified above is prohibited without the express written permission of Cypress.

Disclaimer: CYPRESS MAKES NO WARRANTY OF ANY KIND, EXPRESS OR IMPLIED, WITH REGARD TO THIS MATE-
RIAL, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A
PARTICULAR PURPOSE. Cypress reserves the right to make changes without further notice to the materials described
herein. Cypress does not assume any liability arising out of the application or use of any product or circuit described herein.
Cypress does not authorize its products for use as critical components in life-support systems where a malfunction or failure
may reasonably be expected to result in significant injury to the user. The inclusion of Cypress’ product in a life-support sys-
tems application implies that the manufacturer assumes all risk of such use and in doing so indemnifies Cypress against all
charges.

Use may be limited by and subject to the applicable Cypress software license agreement.

PSoC Designer™ is a trademark and PSoC® and CapSense® are registered trademarks of Cypress Semiconductor Corp. All

other trademarks or registered trademarks referenced herein are property of the respective corporations.
Flash Code Protection

Cypress products meet the specifications contained in their particular Cypress PSoC Data Sheets. Cypress believes that its
family of PSoC products is one of the most secure families of its kind on the market today, regardless of how they are used.
There may be methods, unknown to Cypress, that can breach the code protection features. Any of these methods, to our
knowledge, would be dishonest and possibly illegal. Neither Cypress nor any other semiconductor manufacturer can guaran-
tee the security of their code. Code protection does not mean that we are guaranteeing the product as "unbreakable."

Cypress is willing to work with the customer who is concerned about the integrity of their code. Code protection is constantly
evolving. We at Cypress are committed to continuously improving the code protection features of our products.

2 CY3280-CPM1 CapSense Plus Module Development Kit Guide, Doc. # 001-51922 Rev. *B

+] Feedback

http://ccc01.opinionlab.com/o.asp?id=wRiLHxlo&prev=docurate_001-51922_pdf_p_2

= _ =
== CYPRESS
PERFORM
1. Introduction 5
O O 1 @ (=) PSR 5
O I T (=T (o VS 1 U o (1 (- P UPERER 6
1.3 CY3280-CPM1 Module Board HardwWare.............ccccccvrrieiieiieeeee e eieceiienieeeees e e e e e e e s 7
1.4 System BIOCK DIQQramccciiieeeiiiiiiiiiiiieiireee e e e e s essssneiee e e ereeae e e s s s snnnnnsreneeeeeeeeeeesnnannns 8
1.5 Document ReVISION HISIONYcccccuiiiiiiiiieiee et ee e e e e s s r e e e e e e e e e e ennnes 9
1.6 Documentation CONVENLIONScccuuuiiiiiiiiieeeeesiesiciirerr e e e e e e e e s s s s rrrereeaeeeeeeeannnnns 9
2. Code Examples 11
2.1 RTC e e e e e e e e e ——— e e e e e e e e e e e e e ———aaaaaas 11
2% 0 R [1 0 o [V T3 1T o SO 11
N A o (o o7 Yo [0 = TS 11
N G T = =TS | O 11
2.2 L10-Bit SAR ADC ..ot a e e e e e e e e 11
A% N 1 1 0 o [V T3 1T} o S 11
A A = (oo =T o [| = T 12
2.2.3 RESUIL ..ot ——————————— 12
2.3 IPWMDB EXAMPIES ...ttt ettt bbbt e e e e e e e e e e et n e e eeaaaaeas 12
2.3.1 IPWMDB Dead Bandcuuiiiiiiiiieieiie ittt e e e e 12
2.3.2 IPWMDB MUII=SNOL ...ttt e e e e e 13
A | 0111 = USRS 13
A 3 R [1 0 o [V T3 1T o S 13
A N A = (oo =T o [= T 13
2.4.3 RESUIL...ouuitiiii i ——————————— 14
2.5 Variable Length SPI EXGMPIESooiiiiiiiiiiiieeiiite et 14
2.5.1 Variable Length SPIMASIENccoiiiiiiiiiiiiiie e 14
2.5.2 Variable Length SPI Master-Slave Communicationccccccvvvveeeeeeeiniiecnnns 15
b2 ST VI W O 1= T4 0 1L (o] PSRRI 16
2.6.1 INtrOTUCTION ..uueeieie i e e e e e e e e e e e e e e e bbb as 16
2.6.2 PrOCEAUI.....uutieie i e i e e e e e e e e e e e e e e e e e e e bbb e as 16
2.6.3 RESUIL...ouiiiiiiiiie i ——————————— 16
3. Firmware 17
0 I SR 17
R F01 O A = T T] =] o OSSP 17
3.1.2 PSOCCONMIQ.ASM. . iiiiiii i —————— 18
3.2 LBVEL 2 et a e e e e aaaan 18
1 0t R | - 1 o X o 18
3.2.2 ProjeCt_VErISION.N ..ot 18
3.2.3 Project_platform.n ———————— 19
3.2.4 ProjeCt_Neader.N. ... ————————— 19
G TR T I 1YY I SR 19
CY3280-CPM1 CapSense Plus Module Development Kit Guide, Doc. # 001-51922 Rev. *B 3

+] Feedback

http://ccc01.opinionlab.com/o.asp?id=wRiLHxlo&prev=docurate_001-51922_pdf_p_3

—_—

— -

=
Contents =7 CYPRESkS
R 0 R o o] [=Tod A (=TS Y o OO PP UPPPPPPTPRPPPPPI 19
3.3.2 PrOJECt_teSE. N 19
G I V= S 19
3.4.1 User Module High-Level APL.........oouiii e 19
3.4.2 User Defined ModUIE APoouveiieee e 21
3.4.3 Embedded Firmware TOO...........coeiiiiiiiiiiieiieeiee e e e 22
I T N1 V/=] 15 YN 22
3.5.1 User Module LOW-IEVEI DIIVETciiiieiieee e e 22
A. Appendix 23
YN R S Tod o 1< 0 ¢ = (o 23
A2 TOP SIK SCIEEIN ...ttt e e e et eeee e e e e e e e e e aanas 25
YN =) 1Y F= 1 (=T = | T 26
4 CY3280-CPM1 CapSense Plus Module Development Kit Guide, Doc. # 001-51922 Rev. *B

+] Feedback

http://ccc01.opinionlab.com/o.asp?id=wRiLHxlo&prev=docurate_001-51922_pdf_p_4

1. Introduction

PERFORM

Thank you for your interest in the CY3280-CPM1 CapSense® Plus Module Development Kit.
CapSense Plus is defined as capacitive sensing plus other value-added features, such as LED color

mixing, fan control, motor control, and temperature sensing. Each feature that the PSoC® can
integrate in addition to CapSense is defined as a "Plus" feature.

This kit showcases the CapSense Plus features provided by CY8C22x45 and CY8C28xxx. The
CapSense Plus Module (CPM) is a daughter board of CY3280-22x45 and CY3280-28xxx Universal
CapSense Controller development kits. This document demonstrates some examples that highlight
the new features of CY8C22x45 and CY8C28xxx. These features include:

m Real-time clock (RTC)

m 10-bit successive approximation register (SAR) ADC
m Variable length serial peripheral interface (SPI)

m Pulsewidth modulator (PWM)

This kit also serves as a development platform; you can reuse the source code for your CapSense
Plus applications.

1.1 Kit Contents

The following items are included with the Kkit:

m CY3280-CPM1 CapSense Plus Module Board
m CY3280-CPM1 CapSense Plus Kit CD

m Quick Start Guide

CY3280-CPM1 CapSense Plus Module Development Kit Guide, Doc. # 001-51922 Rev. *B 5

+] Feedback

http://ccc01.opinionlab.com/o.asp?id=wRiLHxlo&prev=docurate_001-51922_pdf_p_5

Introduction

1.2

Directory Structure

The following is a high-level directory structure in the CY3280-CPM1 kit CD-ROM.

---Docs The 'Docs' folder contains the kit documentation in PDF form

---Hardware The 'Hardware'foldercontainsdesignfilesusedinkitdevelopment
---Schematic

--BOM
---SilkScreen

---Firmware The 'Firmware' folder contains firmware of code examples

-- SAR10_Lab
--- IPWMDB_Deadband_Lab
- IPWMDB_MultiShot_Lab
-- SHIFTREGS8_Lab
-- SPIVL_Master_Lab
-- SPIVL_Master_Slave_Communication_Lab

--- Thermistor_Lab

---Hex Files The 'Hex Files' folder contains hex files of code examples
--- RTC_Lab.hex
-- SAR10_Lab.hex
--- IPWMDB_Deadband_Lab.hex
--- IPWMDB_MultiShot_Lab.hex
-- SHIFTREGS8_Lab.hex
-- SPIVL_Master_Lab.hex
-- SPIVL_Master_Slave_Communication_Lab.hex

--- Thermistor_Lab.hex

CY3280-CPM1 CapSense Plus Module Development Kit Guide, Doc. # 001-51922 Rev. *B

= R

— .
=_=.J

CYPRESS

+] Feedback

http://ccc01.opinionlab.com/o.asp?id=wRiLHxlo&prev=docurate_001-51922_pdf_p_6

=7 Cypress

PERFORM Introduction

1.3 CY3280-CPM1 Module Board Hardware

The following figure illustrates the components of the CY3280-CPM1 Module board.
Figure 1-1. Kit Components
40-Pin LEDs

Connector Reserved for
Buttons Thermocouple LED Panel

{

@
-/

DO

o <

< W - -

@y ﬂ 2 3
c g p IRmE
= h 2 ==
= = =
=, 2 e
o § =
Ihtb: Fin 5t =
Lo A== ===
it fopiete =
ey 2@ e e -
T £ - LED Bar
b = | =
Lo

Thermistor

BEEELE
e :yr::!)-b"g

#3

L--

— e v

Reserved for
Speaker

()

Loopback Jumper for Reserved for
SPI Communication Speaker Driver

Potentiometer
The features of the CY3280-CPM1 Module board components are briefly described here:
m Two mechanical buttons - SW1 (P3.5) and SW2 (P3.7)

m LED panel - The LED panel is driven by a serial expanding chip 74HC164; the chip is controlled
by the 8-bit SPI master module inside PSoC. The LED panel contains four digital 7-segment
LEDs with one dot LED in the center. Each 7-segment LED is controlled by a transistor (Q1-Q5),
which is connected to P4.0-P4.4

Potentiometer - Attached to a 10-bit SAR ADC through P0.0
Six LEDs - LED1-LEDG are connected to P4.0-P4.5

LED bar - Demonstrates the variable length SPI user module. It is enabled by a transistor (Q6),
which is connected to P4.5

m Loop-back connection jumpers (JP3 and JP4) - Demonstrates the variable length SPI master-
slave communication

m Audio - Audio with different tones is generated through a DAC (P0.1); a speaker is used to play
the audio (available in the CY3280-28xxx Universal CapSense Controller Development Kit only)

m NTC thermistor - Measures the temperature and is driven by VCC through a resistor divider. The
voltage on NTC thermistor is then connected to the 10-bit SAR ADC for measurement

CY3280-CPM1 CapSense Plus Module Development Kit Guide, Doc. # 001-51922 Rev. *B 7

+] Feedback

http://ccc01.opinionlab.com/o.asp?id=wRiLHxlo&prev=docurate_001-51922_pdf_p_7

Introduction

1.4

;%YPRESS

PERFORM

m Thermocouple - Connected to the CY8C28xxx through the INSAMP user module, then through a
low-pass filter, and then goes to the Delta-Sigma ADC (available for CY3280-28xxx Universal
CapSense Controller Development Kit only)

m Test points/pads - Used for power and ground
m Four rubber feet - Provides mechanical stability

Note The external crystal oscillator (ECO) circuit multiplexes PSoC device pins (P10 and P11) with
the ISSP interface. If you select ECO for a 32-kHz clock source, then disconnect PSoC MiniProg
from ISSP interface. Otherwise, the ECO will not work correctly.

System Block Diagram

The CY3280-CPML1 board is a daughter board of CY3280-22x45 and CY3280-28xxx Universal
CapSense Controller Development Kits. Use these kits together to analyze the advanced CapSense
Plus features provided by CY8C22x45/CY8C28xxx.

Figure 1-2. CapSense Plus System Structure Diagram

Potentiometer

——

MUX 110 G A Thermistor

o A
;Hﬁ>“““£l* PWM
Internal Ref
Generator Thermocouple

— Speaker

Driver
EN

9bit
DAC

SPIVL . [TITTITY) [TTITTTT)
Master 74HC164 74HC164
. (1111111} (1111111}

CY8C22X45/CY8C28XXX

CY3280-CPM1 CapSense Plus Module Development Kit Guide, Doc. # 001-51922 Rev. *B

+] Feedback

http://ccc01.opinionlab.com/o.asp?id=wRiLHxlo&prev=docurate_001-51922_pdf_p_8

=7 Cypress

PERFORM

Introduction

15 Document Revision History
Table 1-1. Revision History
PDF Origin of
Revision Creation 9 Description of Change
Change
Date
** 04/14/09 WCAI/AESA | New kit guide
A 01/08/09 WCAI/AESA Upd_ated Section 2.3.3.2, bullet 3 to disconnect JP3 and bullet 4
to disconnect JP4
*B 03/21/11 JIAO Extensive edits and content reorganization
1.6 Documentation Conventions

Table 1-2. Document Conventions for Guides

Convention

Usage

Courier New

Displays file locations, user entered text, and source code:
C:\ ...cd\icc\

Italics

Displays file names and reference documentation:
Read about the sourcefile.hex file in the PSoC Designer User Guide.

[Bracketed, Bold]

Displays keyboard commands in procedures:
[Enter] or [Ctrl] [C]

File > Open

Represents menu paths:
File > Open > New Project

Bold

Displays commands, menu paths, and icon names in procedures:
Click the File icon and then click Open.

Times New Roman

Displays an equation:
2+2=4

Text in gray boxes

Describes Cautions or unique functionality of the product.

CY3280-CPM1 CapSense Plus Module Development Kit Guide, Doc. # 001-51922 Rev. *B

+] Feedback

http://ccc01.opinionlab.com/o.asp?id=wRiLHxlo&prev=docurate_001-51922_pdf_p_9

== CYPRESS

PERFORM

Introduction

10 CY3280-CPM1 CapSense Plus Module Development Kit Guide, Doc. # 001-51922 Rev. *B

+] Feedback

http://ccc01.opinionlab.com/o.asp?id=wRiLHxlo&prev=docurate_001-51922_pdf_p_10

2. Code Examples

PERFORM

This section describes the code examples that accompany the CY3280-CPM1 kit.

2.1 RTC

This example demonstrates the real time clock (RTC) feature provided by CY8C22x45 and
CY8C28xxx devices. It shows real time on the LED panel.

2.1.1 Introduction

The RTC user module is a new hardware module in CY8C22x45 and CY8C28xxx devices. RTC pro-
vides real time without firmware maintenance. It supports the Hour:Minute:Second format. Time is
displayed by reading data from related registers. Interrupts may be generated based on the value of
the corresponding user-configurable parameter. RTC supports two functional modes: general timer
and real time clock.

2.1.2 Procedure

1. Attach the CY3280-CPM1 board to the CY3280-22x45/CY3280-28xxx board

2. Program the CY3280-22x45/CY3280-28xxx board with the RTC lab hex file using MiniProg via
the ISSP interface

3. Unplug MiniProg from the CY3280-22x45/CY3280-28xxx board
4. Disconnect JP3 and JP4
5. Power the CY3280-22x45/CY3280-28xxx board

2.1.3 Result
The elapsed time is displayed in real time on the CY3280-CPM1 board LED panel.

2.2 10-Bit SAR ADC

This example demonstrates the SAR10 ADC feature provided by CY3280-22x45 and CY3280-28xxx
devices. A potentiometer is connected in serial between VCC and ground; the voltage across the
potentiometer is attached to the SAR10 ADC module through P00. The potentiometer voltage is
measured by the SAR10 ADC. The ADC result is displayed on the LED panel.

221 Introduction

The SAR10 ADC user module is built for optimized ADC hardware for CY3280-22x45 and CY3280-
28xxx devices. It converts an input voltage to a digital code using a SAR block. It produces a 10-bit
unsigned value for each sample. This user module supports three modes of analog-to-digital conver-
sion: software trigger, hardware trigger, and freerun.

CY3280-CPM1 CapSense Plus Module Development Kit Guide, Doc. # 001-51922 Rev. *B 11

+] Feedback

http://ccc01.opinionlab.com/o.asp?id=wRiLHxlo&prev=docurate_001-51922_pdf_p_11

Code Examples

2.2.2

2.2.3

2.3

231

23.11

12

= B
=
= 7

==# CYPRESS

Procedure

1. Attach the CY3280-CPM1 board to the CY3280-22x45/CY3280-28xxx board

2. Program the CY3280-22x45/CY3280-28xxx board with the SAR10 lab hex file using MiniProg via
the ISSP interface

Unplug MiniProg from the CY3280-22x45/CY3280-28xxx board
Connect JP2_1 and JP2 2

Disconnect JP2_3 and JP2_4

Disconnect JP2_5 and JP2_6

Disconnect JP3 and JP4

Power the CY3280-22x45/CY3280-28xxx board

Tune the potentiometer to view the result

© ©No ok

Result

The ADC value is displayed on the LED panel. The value ranges from 0 to 1023 and reflects the volt-
age on the potentiometer.

IPWMDB Examples

The CY3280-22x45 and CY3280-28xxx devices introduce a new user module: Integrated Pulse
Width Modulator Dead Band (IPWMDB). It includes PWMDBS8L and PWMDB16L. The PWMDBSL is
an enhanced version of PWMS8, which can support dead band feature in one digital block. It also has
improved features such as one-shot and multi-shot. The PWMDB16L is an enhanced version of
PWM16, which can support dead band feature and consumes only two digital blocks.

IPWMDB Dead Band

This example demonstrates the IPWMDB dead band feature provided by the CY3280-22x45 and
CY3280-28xxx devices. It implements two modules in PSoC chip:

m PWMDBSL module with 50 percent duty and 2s period

It is used to drive two LEDs: LED1 and LED2. Dead time is inserted between PWM output transi-
tion. The dead time can be measured by scope or is visible during the transition.

m Voltage comparator
a One input of the comparator is connected to the potentiometer voltage output (P0O0).

o The other input of comparator is connected to the internal voltage reference. The voltage
threshold is set in source code.

o The comparator output controls the PWMDBSL Kkill pin.

Procedure

1. Attach the CY3280-CPM1 board to the CY3280-22x45/CY3280-28xxx board

2. Program the CY3280-22x45/CY3280-28xxx board with the IPWMDB deadband lab hex file using
MiniProg via the ISSP interface

Unplug MiniProg from the CY3280-22x45/CY3280-28xxx board
Connect JP2_1 and JP2_2

Disconnect JP2_3 and JP2_4

Disconnect JP2_5 and JP2_6

Disconnect JP3 and JP4

N o gk w

CY3280-CPM1 CapSense Plus Module Development Kit Guide, Doc. # 001-51922 Rev. *B

+] Feedback

http://ccc01.opinionlab.com/o.asp?id=wRiLHxlo&prev=docurate_001-51922_pdf_p_12

= =
= /4 CYPRESS Code Examples

8. Power the CY3280-22x45/CY3280-28xxx board
9. Tune the potentiometer to view the result

2.3.1.2 Result
m When potentiometer voltage is below reference voltage of comparator, both LED1 and LED2 are
off

m When potentiometer voltage exceeds reference voltage of comparator, LED1 and LED2 will flash
periodically and alternately, with a dead time (LED1 and LED2 are off) during flashing

2.3.2 IPWMDB Multi-shot

This example demonstrates the IPWMDB multi-shot feature provided by the CY3280-22x45 and
CY3280-28xxx devices. One LED (LED1) and two buttons (SW1 and SW2) are used. SW2 acts as
the start input of the IPWMDB module; when it is pressed, the IPWMDB is triggered and generates
the multi-shot PWM output pulses. SW1 acts as the kill input of the IPWMDB module. The PWM out-
put drives LED1 directly.

2.3.2.1 Procedure

1. Attach the CY3280-CPM1 board to the CY3280-22x45/CY3280-28xxx board

2. Program the CY3280-22x45/CY3280-28xxx board with the IPWMDB multi-shot lab hex file using
MiniProg via the ISSP interface

3. Unplug MiniProg from the CY3280-22x45/CY3280-28xxx board
4. Disconnect JP3 and JP4
5. Power the CY3280-22x45/CY3280-28xxx board

2.3.2.2 Result

m Leave SW1 and SW2 unpressed; LED1 remains off

m Press SW2 once; LED1 flashes five times depending on the multi-shot number set in source
code

Press SW2 again; LEDL1 flashes five times again
When SW1 is pressed, LED1 is off

2.4 Shifter

This example demonstrates the Shifter feature provided by the CY3280-22x45 and CY3280-28xxx
devices. Three LEDs (LED1, LED2, and LED4) and one button (SW1) are used. LED4 indicates the
period of shift clock. LED1 is directly controlled by the SW1 input, while LED2 is controlled by the
SW1 input with a shifter register between them, so that LED2 changes with a little delay after LED1;
the delay depends on the value of the shifter register.

241 Introduction

The new user module SHIFTREGS is built for digital signal shifting in applications such as the FSK.
It is a modular linear feedback shift register (LFSR) that delays an input bit stream. The Delay Cycle
Number value can be specified to define its output, delayed up to eight PSoC block clocks. Digital
blocks can be cascaded to build up the shifter register chain.

2.4.2 Procedure
1. Attach the CY3280-CPM1 board to the CY3280-22x45/CY3280-28xxx board

CY3280-CPM1 CapSense Plus Module Development Kit Guide, Doc. # 001-51922 Rev. *B 13

+] Feedback

http://ccc01.opinionlab.com/o.asp?id=wRiLHxlo&prev=docurate_001-51922_pdf_p_13

= B
=
= 7

Code Examples =7 CYPRESF

2.4.3

2.5

251

2511

25.1.2

14

2. Program the CY3280-22x45/CY3280-28xxx board with the Shifter lab hex file using MiniProg via
the ISSP interface

3. Unplug MiniProg from the CY3280-22x45/CY3280-28xxx board
4. Disconnect JP3 and JP4
5. Power the CY3280-22x45/CY3280-28xxx board

Result

After powering on, LED4 will flash with the same period as the shift clock

After powering on, the LED2 will be on for a while due to the default reset status and 'Length’ set-
ting in SHIFTREGS

m Press SW1 once, LED1 will flash once, LED2 will also flash once after a delay. Note that duration
of pressing SW1 should be larger than period of shift clock, which is indicated by LED4

m Press SW1 and hold it; LED1 is turned on. LED2 will also be turned on after a delay; the delay
depends on the 'Length’ setting in SHIFTREG8. When SW1 is released, LED1 is turned off, then
LED?2 is also turned off after a delay

Variable Length SPI Examples

The CY3280-22x45 and CY3280-28xxx devices introduce a new user module, Variable Length SPI.
This user module provides an SPI user module that can be configured as variable data length. You
can configure arbitrary data length from 9 to 16 bits. It includes two types: SPI master (SPIMVL) and
SPI slave (SPISVL).

Variable Length SPI Master

This example demonstrates the SPIMVL feature provided by the CY3280-22x45 and CY3280-28xxx
devices using the LED bar. The SPIMVL sends out data of different length (from 9 to 16 bits) period-
ically; this data is displayed on the LED bar. The number of LEDs turned on indicates the SPI data
length parameter, therefore, the number of LEDs turned on also changes from 9 to 16 periodically.

Procedure

1. Attach the CY3280-CPM1 board to the CY3280-22x45/CY3280-28xxx board

2. Program the CY3280-22x45/CY3280-28xxx board with the Variable Length SPI Master lab hex
file using MiniProg via the ISSP interface

3. Unplug MiniProg from the CY3280-22x45/CY3280-28xxx board
4, Disconnect JP3 and JP4
5. Power the CY3280-22x45/CY3280-28xxx board

Result

The number of LEDs turned on changes from 9 to 16 periodically. This indicates that SPI data length
also changes from 9 to 16 bits periodically.

CY3280-CPM1 CapSense Plus Module Development Kit Guide, Doc. # 001-51922 Rev. *B

+] Feedback

http://ccc01.opinionlab.com/o.asp?id=wRiLHxlo&prev=docurate_001-51922_pdf_p_14

T
— il
=

=
= /4 CYPRESS Code Examples
25.2 Variable Length SPI Master-Slave Communication

This example demonstrates the SPIMVL and SPISVL features provided by the CY3280-22x45 and
CY3280-28xxx devices. One SPIMVL UM and one SPISVL UM are used. Data length parameters of
SPIMVL and SPISVL are always set to the same value, which changes from 9 to 16 bits periodically.
SPIMVL sends out a specific data, which is a function of SPI length parameter; SPISVL receives the
data. If the data received equals the data sent, the data is displayed on the LED bar. Otherwise, the
LED bar remains off.

2521 Procedure

1. Attach the CY3280-CPML1 board to the CY3280-22x45/CY3280-28xxx board

2. Program the CY3280-22x45/CY3280-28xxx board with the Variable Length SPI Master-Slave
Communication lab hex file using MiniProg via the ISSP interface

3. Unplug MiniProg from the CY3280-22x45/CY3280-28xxx board
4. Connect JP3 and JP4
5. Power the CY3280-22x45/CY3280-28xxx board

2522 Result
m The LED bar is always on, indicating that the communication between SPIMVL and SPISVL is
successful
m The number of LEDs turned on changes periodically
a The lower 8 bits of LEDs are always on

o The higher 8 bits of LEDs are turned on individually in rotation. This indicates that the data
lengths of both SPIMVL and SPISVL change from 9 to 16 bits periodically and at the same
pace.

CY3280-CPM1 CapSense Plus Module Development Kit Guide, Doc. # 001-51922 Rev. *B 15

+] Feedback

http://ccc01.opinionlab.com/o.asp?id=wRiLHxlo&prev=docurate_001-51922_pdf_p_15

Code Examples

2.6

2.6.1

2.6.2

2.6.3

16

—_—

— -

== .
= ¥ -

==# CYPRESS

NTC Thermistor

Introduction

This example demonstrates a temperature measurement method with the NTC thermistor. You can
make your own temperature measurement application using this example.

Procedure

1.
2.

© N o gk w

Attach the CY3280-CPM1 board to the CY3280-22x45/CY3280-28xxx board

Program the CY3280-22x45/CY3280-28xxx board with the NTC thermistor lab hex file using
MiniProg via the ISSP interface

Unplug MiniProg from the CY3280-22x45/CY3280-28xxx board
Connect JP2_3 and JP2 4

Disconnect JP2_1 and JP2_2

Disconnect JP2_5 and JP2_6

Disconnect JP3 and JP4

Power the CY3280-22x45/CY3280-28xxx board

Result

The temperature is displayed on the LED panel.

CY3280-CPM1 CapSense Plus Module Development Kit Guide, Doc. # 001-51922 Rev. *B

+] Feedback

http://ccc01.opinionlab.com/o.asp?id=wRiLHxlo&prev=docurate_001-51922_pdf_p_16

Firmware

%_': _____E__E_S_S

—_—
PERFORM

All CapSense Plus examples are based on firmware architecture similar to the following diagram.
The architecture includes five levels and each level is discussed in detail in the following sections.
These levels are effective for code reuse and can speed up project development.

—
—
Ll
a Boot.asm
-
N
- . .
g Main.c Project_version.h| Project_platform.h | project_header.h
L
-
® Project_test.c
d Project_testhf [7
>
L
-
<
—
g Tool_cpu.c Tool_utils.c UM1_api.c UMn_api.c MyModulel_apic | MyModulen_api.c
i1 Tool_cpu.h Tool_utils.h UM1_api.h UMn_api.h MyModulel_api.h MyModulen_api.h
u _
Yo}
—
L
>
w UMLasm UMn.asm
UMLh UMn.h

UML.inc UMn.inc

3.1 Level 1

This level implements PSoC system initialization, then calls main functions directly. The related
source files are generated by PSoC Designer™ automatically. The important source files are
boot.asm and PSoCConfig.asm. They are briefly discussed here; for more details, refer to the IDE
User Guide.pdf and source code.

3.1.1 Boot.asm

This is the startup file of PSoC firmware system and is located in the Source Files folder. It defines
the boot sequence:

m Define and allocate reset and interrupt vectors
m Initialize device configuration

CY3280-CPM1 CapSense Plus Module Development Kit Guide, Doc. # 001-51922 Rev. *B 17

+] Feedback

http://ccc01.opinionlab.com/o.asp?id=wRiLHxlo&prev=docurate_001-51922_pdf_p_17

Firmware

3.1.2

3.2

3.21

3.2.2

18

= B
=
= 7

==# CYPRESS

m Initialize C environment if using the C compiler
m Call main function to begin executing the application code

When a project is created, the template file, boot.tpl, is copied into the project directory. Each time
the project is generated, the boot.asm file is also generated from the local boot.tpl file. Boot.asm is
regenerated every time device configurations change and application files are generated. This
ensures that interrupt handlers are consistent with the configuration. If you make changes to
boot.asm that you do not want overwritten, modify the local project boot.tpl file and then regenerate
the file.

PSoCConfig.asm

This is a required Library Source file because it contains the configuration that is loaded at system
power-up. PSoC Designer overwrites PSocConfig.asm automatically when a device configuration
changes and application files are regenerated, with no exceptions.

Level 2

This level includes main function and global header files. Almost all the user interfaces are imple-
mented here:

m Implement main() in Main.c
m Configure firmware into different versions in Project_version.h
m Define different hardware platforms in Project_platform.h

Main.c

The C entry function main() is implemented here. You can combine all lower levels (level 3 ~ level 5)
code in main() to implement the whole system functionality. Refer to the source code for detailed
information.

Project_version.h

This file defines project version related macros. These macros work as compiling flags; modifying
their value provides different compiling results, which represent different versions of code.

Different PSoC hardware configurations. The PSoC device is flexible and configurable, so the
firmware should also be flexible enough to support different hardware configurations. This way, when
you change hardware configuration, you need to make minimum modifications such as changing a
macro’s definition.

Different PSoC parts. The PSoC device has a series of families, such as: CY8C29xxx and
CY8C24xxx. They are similar and compatible with each other to some extent. It may be necessary to
migrate the firmware from one family to another. The firmware architecture should be flexible enough
to support different families to allow firmware migration with minimum modification.

Different compiler configurations. Sometimes it is necessary to add self-testing or debugging
code to the source code. This needs to be removed after completing debugging or testing. The
project_version.h defines several macros, such as DEBUG, SELF-TEST, and RELEASE. They are
applied in the source code to control compiling results and support different firmware development
stages.

Different hardware platforms. PSoC targets small and flexible systems. The hardware platform
may have different versions with little difference, such as different pin assignments. The firmware

CY3280-CPM1 CapSense Plus Module Development Kit Guide, Doc. # 001-51922 Rev. *B

+] Feedback

http://ccc01.opinionlab.com/o.asp?id=wRiLHxlo&prev=docurate_001-51922_pdf_p_18

= B
=
= 7

= /4 CYPRESkS Firmware

architecture should be flexible enough to be compatible with different hardware platforms. This will
allow firmware migration between different hardware platforms with minimum firmware modification.

With project_version.h file, the firmware architecture can be easily applied into similar projects.
Therefore, the source code can be reused as much as possible.

3.2.3 Project_platform.h

This file defines hardware platform related information such as pin assignment. The hardware plat-
form may have different versions with little difference. You can list all versions of hardware platforms
in this file, and then combine with Project_version.h to control the compiler to generate different ver-
sions of programming files for different hardware platforms.

3.24 Project_header.h

PSoC Designer generates a header file psocapi.h to include all user module header files. Similarly,
the firmware architecture discussed here also contains a header file project_header.h to include all
project-related header files. You can reference all the firmware resource, such as global constants,
global variables, and global functions, in your code by simply adding this file to your source file.

3.3 Level 3

During firmware development, it is necessary to add self-test code in debugging or testing stages,
especially when there are no emulating tools. This level implements self-test code, which is in the
project range. If there is a bug, locate it and confirm if it is triggered by a single module. Then, add
the self-test code in UM_api.c. If the bug is triggered in system level, all modules will work individu-
ally, but the bug appears when they are combined. In this case, add self-test code in Project_test.c.
After the bug is located, you can eliminate the self-test code from the final programming file by mod-
ifying the macro defined in Project_version.h. This can be reused later.

3.3.1 Project_test.c

This file implements project-range self-test code. Combine all lower level (level 4 to level 5) code to
test the system functions. These codes are conditionally compiled into final hex file by the macro
defined in Project_version.h. It also provides and interface to call the user module range self-test
code. See the source code for details.

3.3.2 Project_test.h

This is the header file of project_test.c. See the source code for details.

34 Level 4

This is the core level in the firmware architecture. All code in this level is reusable and expandable. It
includes the following categories:

m User module high-level API
m User defined module API
m Embedded firmware tool

3.4.1 User Module High-Level API

Cypress provides several ready-to-use user modules. Every user module is integrated with a com-
plete low-level firmware driver, which can be referenced directly in the source code. The user mod-
ule low-level driver is fixed and generated automatically. The high-level API is based on the low-level

CY3280-CPM1 CapSense Plus Module Development Kit Guide, Doc. # 001-51922 Rev. *B 19

+] Feedback

http://ccc01.opinionlab.com/o.asp?id=wRiLHxlo&prev=docurate_001-51922_pdf_p_19

Firmware

3411

3.4.1.2

20

= B
=
= 7

==# CYPRESS

driver, and similar to an expandable and sharable UM API library, you can combine any low-level
functions to create a new high-level function to satisfy specific features.

UM_api.c
This is a high-level API code for specific user module, the 'UM' represents the name of the user mod-
ule; for example, you can create 'Timer_api.c' for timer.

UM_api.c does the following tasks:

Implement new low-level functions. This is to supplement the original low-level driver generated
by PSoC Designer automatically when necessary

Implement high-level functions. This is to combine low-level functions to implement specific fea-
tures.

Implement user module range self-test functions. This is to implement self-test code, which is
only used to test user module features. It is different from the project-ranged self-test code imple-
mented in Project_test.c

Create data members for user modules. This is similar to object-oriented language, such as C++,
whose object always has two fields: ‘'member functions' and 'data members'. UM_api.c also creates
data members for user modules when necessary.

Be compatible with different user modules in the same category. In some cases, several user
modules may fall into the same category. For timer, PSoC Designer provides 'sleep timer' and 'nor-
mal timer'; For ADC, there are 'ADCINC' and 'SAR'. These user modules, especially their high-level
APIs, are similar. Therefore, UM_api.c should be compatible with different user modules in the same
category.

UM_api.h
This is header file of UM_api.c. It performs the following tasks:

m Defines macros for conditionally compiling UM_api.c into different versions to be compatible with
different user modules in the same category

for example:

#define ADC_TYPE_SAR 1

#define ADC_TYPE_ADCINC 2

#define ADC_TYPE_SELECTION ADC_TYPE_SAR
m Defines user module related constants

for example:

#define ADC_RESOLUTION 10
m Defines user module related data type

for example, for 8-bit ADC and 10-bit ADC, defines a new data type (ADC_WORD) to support dif-
ferent ADC resolution

i

//[Define ADC data type based on ADC_RESOLUTION
#if (ADC_RESOLUTION <= 8)

typedef unsigned char ADC_WORD;

#else

typedef unsigned int ADC_WORD;

CY3280-CPM1 CapSense Plus Module Development Kit Guide, Doc. # 001-51922 Rev. *B

+] Feedback

http://ccc01.opinionlab.com/o.asp?id=wRiLHxlo&prev=docurate_001-51922_pdf_p_20

T
— il
=

= /4 CY.PRESkS Firmware

#endif//(ADC_RESOLUTION <= 8)
ML
m Defines user module related data type for 'data members', see the RTC module example:
typedef struct {
unsigned char bHour;
unsigned char bMinute;
unsigned char bSecond;
unsigned char bBCDHour;
unsigned char bBCDMinute;
unsigned char bBCDSecond;
} RTCAPI_PARAMS_STRUCT;
m Declares user module related global variables
extern RTCAPI_PARAMS_STRUCT RtcApi_tParams;
Declares user module related global functions

Defines macros to conditionally compile UM_api.c into different versions and support user mod-
ule range self-test feature

3.4.2 User Defined Module API

Besides ready-made user modules provided by PSoC Designer, you may need customized modules
such as a software module that only implements arithmetic or a new module created by combining
other available user modules to implement complex functionality. Such modules are called 'user
defined module' and are packed and integrated into this level for maximum code reuse.

MyModule_api.c. There is no common coding pattern for MyModule_api.c. It depends on specific
functions.

MyModule _api.h. This is header file of MyModule_api.c.
3.4.2.1 Examplel

Following is an example of a user defined module, 5-digit 7-segment LED

m The 7-segment LED is driven by 74HC164 chip whose interface with MCU is 8 bits SPI, so an
'SPIM' user module is required.

m Five digits need 5 pins to turn them on and off, so you need five LED user modules.
m One 'timer8' is required to implement 7-segment LED scanning period.

Therefore, this user defined module is the combination of one SPIM, one timer8, and five LED user
modules. The source code of '5-digit 7-segment LED' should be based on APIs of 'SPIM', 'timer8',
and 'LED'.

3.4.2.2 Example2

Button is a basic component in embedded system. It is used to add delay and confirm button status
to prevent fake button trigger. A new user defined module can be created to implement
Button_flsPressed() function for code reuse.

CY3280-CPM1 CapSense Plus Module Development Kit Guide, Doc. # 001-51922 Rev. *B 21

+] Feedback

http://ccc01.opinionlab.com/o.asp?id=wRiLHxlo&prev=docurate_001-51922_pdf_p_21

Firmware

3.4.3

3.5

3.5.1

22

= B
=
= 7

==# CYPRESS

Embedded Firmware Tool

This part of the code contains tools for debugging, testing, or speeding up firmware development. It
is similar to an embedded firmware library or a C standard library. You can make your own tool and
expand the tool box. The following are some of the existing tools.

Tool_debug.h. This file defines a series of debugging tools that are useful during code debugging,
especially when there are no emulation tools. Insert these tools in your source code directly where
you want to set a test point. These tools can be conditionally compiled into the final hex file by the
macro defined in Project_version.h. See the source code for details.

Tool_utils.c. This file defines miscellaneous functions that satisfy the following rules:

m simple functions used frequently

m hardware independent

m small code size (this rule is optional, because HI-TECH compiler can eliminate unused code
automatically)

A typical example to be added into tool_utils.c is the 'delay subroutine'. The 'delay subroutine' satis-
fies all the rules listed above, it is small and does not depend on any hardware. It also occupies little
ROM space. See the source code for details.

Tool _utils.h. This is the header file of tool_utils.c. See the source code for details.

Tool_cpu.c. This file defines miscellaneous functions to implement low-level CPU related features
which can be reused in any project. See the source code for details.

Tool_cpu.h. This is the header file of tool_cpu.c. See the source code for details.

Level 5

The PSoC device is highly flexible and configurable. Cypress provides several ready-to-use user
modules. Every user module is integrated with complete low-level firmware driver and a detailed
data sheet.

User Module Low-level Driver

PSoC Designer generates the source code of low-level drivers for a user module in the Device Edi-
tor. These drivers can be referenced directly in the source code. The driver is a composite of
UM.asm, UM.h, and UM.inc. For more information, refer to the respective user module data sheet.

CY3280-CPM1 CapSense Plus Module Development Kit Guide, Doc. # 001-51922 Rev. *B

+] Feedback

http://ccc01.opinionlab.com/o.asp?id=wRiLHxlo&prev=docurate_001-51922_pdf_p_22

PERFORM

CYPRESS

==

B

+] Feedback

23

og S26vT-43d | g
pey Joquiny wawnoog | ez

TWdD-08ZEAD o e s
1010NpU0dIWSS ssa1dAD) "

! 00¥TS-dT¢T ‘VOd za: *®
udei g Q31
¥156-40Ad :d0d

1a31
ydeio 68 a1

H N
N
EERE«E mmmﬁmmﬁmmm ydess seg @31
. ElEEERE 4
1aVY9TOHYLON T
ans
v
a
I
10
aan 13s3y4
en
aInpowW y9TSHYL
9Nyt Py Q31 5 N wt poy @Il £a 9N 3 Py @31 10

N » N %
ng oy g <l PANS e A Y R <l AN < Jlolva
0 €Tvd €0 Zrd 0 TTrd k¢ Oz
ot v ot & Mot [} ot ™

» —
X £ON
© 8 o— o~ o— o—
o - 407300HLYD i i i lo | | | | raconv
- = By — — o — o mewp
Q © e e I e e T I i o
| — Tl oadoHyy — — _ ' oo
o35 ET1 57300HIvD
m M m —8235 1 V' 30HLYD TIAONY |
m W en XNT8rZ-41n mn a3 [easwNN

A.
Al

CY3280-CPM1 CapSense Plus Module Development Kit Guide, Doc. # 001-51922 Rev. *B

http://ccc01.opinionlab.com/o.asp?id=wRiLHxlo&prev=docurate_001-51922_pdf_p_23

-

=7

CYPRESS

PERFORM

BN AepU

S26vT-434

JBquINN JawNoog

TINdO-082EAD

1010Npu0dIWas ssaddAD

00VTS-"TCT ‘VOd
¥156-40dd 90d

“uoreolUaA 81dnoOWIBY L 8 0} Z Uid B 9 0} § Uld
“UOITRDLIDA BOUBISILLIBYL ‘ O} € Uld
‘UoIROULIBA DAY Z 01 T Uid

sbumaes zdr

USA OVa ‘0T 03 6 Uld

In
"

= aporIdoRy W x0T =

Jadwing 1S TXZHAH

[21ed 4 i

Mot
ved Q9
suonng
20A
| = areindod 10N 0q
i —
! AT0== == 470
| 0
L
! a[tlod <
| MooT eed
I
qlolod N
i Moot Led
| Mot Mot
i ovd Q9 Q9 6EY
, 20A R
i ST zpd MU Tod
I
R anov
T uiodisel Juodisal.
8dL L

%I'MOT 6

Sed

Ei“
2lvd
[tlod
vde
[2]ed
oled “1adwnf ou yneyaq ;310N
= T
Bz} [tlvd Jodung 1dS TXZHAH
Tlvd
odisa) Ll wiodisa | n
0T 108 vas P]Ed
3 O | e wony ™ e Torg QO Olrd !
zdl e— TdL
% £dr
WA 9ON “1adwinf ou ynejaq ;310N

=

o
M6E 6cd dug'e LD

wyoo zey —
| angv
— - — - — AN
, | oA Jnze
= 9 = 9
i angv
! § angv
4nTo
i ¥ o
NG+
| divads
+OA 2 NI
7 < Slaan B +Ni
i oo zsd Ilane 7 on
& on N3
<
7 wyoo TSY
1a5002vdL v
! 1 Vn_zo<
i 40 €0
|
iodisa wiodisa wiodisa L 7

€dL

foen 00A uA

Mot oed 7
[4 . SA I

ssadwing pue aoeylau|

SHN2IID uoned s/ Bojeuy

CY3280-CPM1 CapSense Plus Module Development Kit Guide, Doc. # 001-51922 Rev. *B

24

+] Feedback

http://ccc01.opinionlab.com/o.asp?id=wRiLHxlo&prev=docurate_001-51922_pdf_p_24

'CYPRESS

PERFOR

MW

A.2 Top Sil

k Screen

20 11

20

O R48 @D

iu

o]

OOOOOOOOOO

0000000000

OOOOOOOOOO

Jooooo0000o0

1 10
1 LED1

! LED2 1o

9
00000000

Rev3.0

OJZ

cv3280-CPM1 [0 oo o
-~ S -

DEFAULT NO JUMPER

O00000O0OOOOOOOOOOOOOO
Q0000000000 OOOOOOOO
=

0o O] =
w
u DSE THERMAL D 4&
g 35 RESISTOR J1 v
1d GDRT!
s
[00]os @
GCDOr41
P8
2e O- @
o0 2 |0~ m 5
00 Ra1 O ° [== 07
[0X6} } - < =) AGND@
00 RV1 (0 0)
> O cig c2, R23 DEFAULT NO JUMPER Tps@
R22 .
== o uaggé JP1 sV
P2 SETTINGS N N NN
1 70 2:ADC .@1:) = = bOD) |[= =
3 70 4:THERMISTANCE = ool o=
570 6% 7 TO 8: '“ERMGCDUFLE =] | (@Q0pdDD) |[&=]
9 70 10:DAC ol o|eo = o
fda__oled® red= o
S Rlz RI9 RT_ C7 R3O
RJ‘NS R60 R27° €9 ize u4 522
— — JP4 JP3 riopit
C Q[0 g 195
Vad j
Swe SW1
93
Vin

CY3280-CPM1 CapSense Plus Module Development Kit Guide, Doc. # 001-51922 Rev. *B

25

+] Feedback

http://ccc01.opinionlab.com/o.asp?id=wRiLHxlo&prev=docurate_001-51922_pdf_p_25

=

=y CYPRESS

PERFORM

A.3 Bill of Material
Iltem | Qty. Reference Description Manufacturer Mfr Part Number
1 7 C1,C2,C3,C4,C8,C10,C11 CAP CER 0.10UF 25V X7R 10% 0603 AVX Corporation 06033C104KAT2A
2 1 C5 CAP CER 1.0UF 25V X7R 10% 0805 TDK Corporation C2012X7R1E105K
3 1 C6 CAP CER 22UF 16V X5R 20% 1206 Murat_a Electronics North | GRM31CR61C226ME
America 15L
4 2 C7,C9 CAP CER 3300PF 10V X7R 10% 0603 AVX Corporation 0603ZC332KAT2A
5 6 D1,D2,D3,D4,D5,D6 LED RED 635NM DIFF LENS 0805 Sharp Microelectronics |LT1D40A
6 3 |ap1,IP3,3P4 CONN HEADER 2POS .100" STR TIN g‘t’lf: Connector Corpo- | 941500122
7 1 JP2 CONN HEADER 10POS .100 STR TIN FCI 67997-410HLF
8 1 Ji SPEAKER INTERFACE N/A N/A
9 1 |32 CONN HEADER 40POS .100" R/A TIN x:l':: Connector Corpo- | 94155 9140
10 1 J3 PROBE INTERFACE N/A N/A
11 2 LED1,LED2 LED BAR GRAPH 10-SEGMENT GREEN |[Lite-On Inc. LTA-1000G
12 6 Q1,02,03,04,Q5,Q06 TRANSISTOR SWITCHING PNP SOT-23 |Fairchild Semiconductor [MMBT3702
13 1 RT1 THERMISTOR NTC 10K OHM 5% RAD |EPCOS Inc. B57891M0103J000
14 1 RV1 POT 10K OHM 9MM VERT NO BUSHING |Panasonic - ECG EVU-F3AF30B14
R1,R2,R3,R4,R5,R6,R7,R24 .
15 13 R30,R33,R34,R39 R40 RES 10K OHM 1/10W 5% 0603 SMD Panasonic - ECG ERJ-3GEYJ103V
R8,R9,R10,R11,R12,R13,R1
16 16 4,R15,R16, RES 200 OHM 1/10W 5% 0603 SMD Panasonic - ECG ERJ-3GEYJ201V
R17,R18,R19,R20,R21,R22, 0
R23
17 5 R25,R27,R32,R49,R50 RES ZERO OHM 1/10W 5% 0603 SMD |Panasonic - ECG ERJ-3GEYOROOV
18 2 R26,R36 RES 100 OHM 1/10W 5% 0603 SMD Panasonic - ECG ERJ-3GEYJ101V
19 2 R28,R29 RES 39K OHM 1/10W 5% 0603 SMD Panasonic - ECG ERJ-3GEYJ393V
R31,R41,R42,R43,R44,R45 .
20 9 R46.R47 R48 RES 1.0K OHM 1/10W 5% 0603 SMD Panasonic - ECG ERJ-3GEYJ102V
21 1 R35 RES 10.0K OHM 1/10W 1% 0603 SMD Panasonic - ECG ERJ-3EKF1002V
22 2 R37,R38 RES 100K OHM 1/10W 5% 0603 SMD Panasonic - ECG ERJ-3GEYJ104V
23 2 R51,R52 RES ZERO OHM 1/4W 5% 1206 SMD Panasonic - ECG ERJ-8GEYOROOV
24 2 SW1,SW2 LT SWITCH 6MM H=5MM 130GF Panasonic - ECG EVQ-PADO5R
25 8 ¥g%'¥:§§’TP3’TP4'TP5’TP6’ TEST POINT PC MINI .040"D BLACK Keystone Electronics 5001
26 1 U1 LED 7-SEG .4" 4DGT SUPER RED Com- Lite-On Inc. LTC-4627IR
mon Anode
27 2 u2,u3 IC SHIFT REG 8BIT SER/PAR 14S0OIC ON Semiconductor MC74HC164ADG
28 1 U4 IC 1.1W CLASS-D AUDIO AMP 8-SON Texas Instruments TPA2005D1DRBR
Special Installation:
29 1 For J1 SPEAKER 8OHM .3W 87DB 15MM SMD |PUI Audio SMS-1508-2-R
30 1 For J3 PROBE TEMP "K" 4' INSULATED LEAD |TPI (Test Products Int) |GK11M
31 4 BUMPER CLEAR .440X.20" DOME Richco Plastic Co RBS-2
32 6 ilIJNMPER’ CONN JUMPER SHORTING Sullins Electronics Corp |STC02SYAN
26 CY3280-CPM1 CapSense Plus Module Development Kit Guide, Doc. # 001-51922 Rev. *B

+] Feedback

http://ccc01.opinionlab.com/o.asp?id=wRiLHxlo&prev=docurate_001-51922_pdf_p_26

	CY3280-CPM1 CapSense® Plus Module Development Kit Guide
	Contents
	1. Introduction
	1.1 Kit Contents
	1.2 Directory Structure
	1.3 CY3280-CPM1 Module Board Hardware
	1.5 Document Revision History
	1.6 Documentation Conventions

	2. Code Examples
	2.1 RTC
	2.1.1 Introduction
	2.1.2 Procedure
	2.1.3 Result

	2.2 10-Bit SAR ADC
	2.2.1 Introduction
	2.2.2 Procedure
	2.2.3 Result

	2.3 IPWMDB Examples
	2.3.1 IPWMDB Dead Band
	2.3.2 IPWMDB Multi-shot

	2.4 Shifter
	2.4.1 Introduction
	2.4.2 Procedure
	2.4.3 Result

	2.5 Variable Length SPI Examples
	2.5.1 Variable Length SPI Master
	2.5.2 Variable Length SPI Master-Slave Communication

	2.6 NTC Thermistor
	2.6.1 Introduction
	2.6.2 Procedure
	2.6.3 Result

	3. Firmware
	3.1 Level 1
	3.1.1 Boot.asm
	3.1.2 PSoCConfig.asm

	3.2 Level 2
	3.2.1 Main.c
	3.2.2 Project_version.h
	3.2.3 Project_platform.h
	3.2.4 Project_header.h

	3.3 Level 3
	3.3.1 Project_test.c
	3.3.2 Project_test.h

	3.4 Level 4
	3.4.1 User Module High-Level API
	3.4.2 User Defined Module API
	3.4.3 Embedded Firmware Tool

	3.5 Level 5
	3.5.1 User Module Low-level Driver

	A. Appendix
	A.1 Schematic
	A.2 Top Silk Screen
	A.3 Bill of Material

