
 Contents
 1 Overview

o 1.1 Raspberry Pi Header
o 1.2 Address Select Header
o 1.3 Motor Drivers
o 1.4 Motor Terminal Blocks
o 1.5 Motor Power Terminal Blocks

 2 Power
 3 Stepper Motors

o 3.1 Overview
o 3.2 Connections
o 3.3 Control

 3.3.1 Definitions
 3.3.2 Commands

o 3.4 End Stops / Limit Switches
 4 DC Motors

o 4.1 Overview
o 4.2 Connections
o 4.3 Control

 4.3.1 Definitions
 4.3.2 Commands

o 4.4 Tachometers
 5 Other Features

o 5.1 Interrupts
 5.1.1 General
 5.1.2 Stepper Specific
 5.1.3 DC Specific

o 5.2 LED Control

Overview

Congratulations on the purchase of your MOTORplate! We believe that you’ll find it the most
powerful motor controller for the Raspberry Pi on the market today. Before diving into the
details of your Pi-Plate, let’s take a quick tour of the major features. Below, we have highlighted
the major functional areas:

Raspberry Pi Header

This is the connector that attaches to the Raspberry Pi or to another Pi-Plate if you are stacking
your boards. As shipped, this connector works with all versions of the Raspberry Pi. If you you
need access to the extra pins of the B+, A+, and Revision 2 of the RPI then you can solder in the
included 2X7 stacking connector.

Address Select Header

This header, along with the three shunts connected to it, allow you to set the address of your
MOTORplate. The address can be set from 0 to 7, so up to eight MOTORplates can be used in a
single stack. Note that each Pi-Plate model has a unique TYPE address so it’s possible to have a
MOTORplate stacked on top of a DAQCplate with both set to address 0.

Use the diagram below as a guide for setting the address of your MOTORplate:

Motor Drivers

These are two Toshiba TB6612FNG chips that interface directly to your motors. Each chip
contains two H-bridges capable of driving a single bipolar stepper motor or two DC motors.
They can operate with motor voltages as high as 15VDC and at an average current of 1.2 Amps
and peak currents as high as 3.2 Amps. Since the H-bridge transistors are MOS instead of
bipolar, these chips run cool while providing more power to the motors. An on-board
microprocessor connected directly to the Raspberry Pi interfaces directly to these chips which
simplifies the code required to drive a motor.

Motor Terminal Blocks

The MOTORplate has two, 10 pin terminal blocks for the attachment of motors and sensors.
These are shown in the diagram below. Details on connecting to these terminals is covered in
more detail below in the Connections chapter.

Motor Power Terminal Blocks

The MOTORplate has two headers that allow you to choose between three power sources for
each of the motor drivers. These are shown in the diagram below. Details on connecting to these
terminals is covered in more detail below.

Power
Motors come in all shapes and sizes and are designed to operate at different voltages. The
equation for motor output power is Po=torque•speed. And, the equation for the motor input
power is Pi=voltage•current. The efficiency of a motor is η=Po/Pi. If we combine these equations
we get: torque=(voltage•current•η)/speed or speed=(voltage•current•η)/torque. Therefore, if you
want more speed or torque from your motor, you will either need more voltage or current.

Most likely, you will use motors that require either a different voltage or higher power
requirements than what is available from your Raspberry Pi. The MOTORplate has two headers
that allow you to choose between three power sources for each of the motor drivers. A jumper
on each header allows selection of:

1. The 5VDC that drives your Raspberry Pi
2. The power supply connected to the terminal block labeled VM1
3. The power supply connected to the terminal block labeled VM2

By default, the jumpers are set to power the motor drivers directly from your Raspberry Pi
5VDC supply. However, we strongly advise against this unless you have a VERY good source of
5VDC or if you are driving small motors. Driving anything greater than 500mA will most likely
cause your system to reboot from a power droop. In addition, this option only supports motors
that can operate at 5VDC.

 Default Power Steering Settings – on board RPI 5VDC routed to both motor drivers

To deliver more power to your motor, you should attach a separate power supply to VM1 or
VM2. Then move the jumper on the power steering to the appropriate source. Remember: the
voltage on these supplies cannot exceed 15VDC! Lets look at a few examples:

A Single 12VDC supply on VM1 input being routed to both motor drivers

12VDC Supply connected to VM1 and routed to Motor Driver 2. 6VDC Supply connected to
VM2 and routed to Motor Driver 1

A Single 6VDC supply on VM2 input being routed to both motor drivers

Stepper Motors

Overview

Each MOTORplate can drive two bipolar stepper motors. Stepper motors have some unique
advantages as well as disadvantages over DC motors. Some of the advantages are:

 Once a start position has been established, steppers can be repeatedly driven to a specific
location without any positional feed back (also known as dead reckoning)

 When stopped, steppers can maintain a holding torque

Some disadvantages include:

 The rotational resolution is coarse unless microstepping is used
 They are more complicated to drive
 They can be noisy
 They are slower
 They cannot produce as much torque

Rather than filling this document with pages and pages of detailed information regarding stepper
motors we suggest you read this article from someone who is far smarter than we are on the
topic. https://pi-plates.com/wp-content/uploads/2015/04/steppermotor.pdf

Connections

Here’s an image of the motor connectors again. Note that stepper ‘A’ attaches to the four
leftmost terminals on the left connector and stepper ‘B’ attaches to the four leftmost terminals on
the right. See below for the use of the Sensor Inputs. http://pi-plates.com/motorplate-users-
guide/#limits

A bipolar stepper motor has the schematic shown below. As you can see, there are four wires
attached to the two windings.

While there is no formal standard on the color of the wires and how they should be connected
to the drivers. we did find this table at Lin Engineering that correlated to the common 1.8° per
step motors that we have: https://pi-plates.com/wp-content/uploads/2015/04/P1010622.jpg

Specifically, when we used Color Code 2 and connected to the MOTORplate as shown below,
we were able to drive our motors without any problems. However, some trial and error may be
required to determine your motor wiring scheme if you have different wire colors. It might also
help to use an ohmmeter to determine which wire pairs are attached to a coil.

Now, our motors actually have 6 wires so that they can be used in either a unipolar or bipolar
configuration. However, we use the bipolar arrangement since it provides us more torque and
that is what the MOTORplate is designed to support.

Control

The discussion that follows assumes that your stepper motor has a resolution of 1.8° per step or
200 steps per revolution. However, the documentation applies to bipolar stepper motors of any
resolution.

Definitions

The following arguments and their definitions are used in the commands required to control
stepper motors with the MOTORplate.

 addr: Address – MOTORplates have jumpers on the board that allow their address to be
set to a value between 0 and 7. The location of these jumpers and their settings are
discussed above.

 motor: Motor Designator – used for selecting the motor to drive. For stepper motor
functions this is either an ‘a’ or a ‘b’ – the case is insensitive but the characters have to be
enclosed in quotation marks. The ‘a’ stepper is attached to Motor Connector 1 and the ‘b’
stepper is driven by attached to Motor Connector 2. See the diagram above for reference.

 dir: Direction – the two accepted arguments are clockwise ‘cw’ and counter clockwise
‘ccw’ – the case is insensitive. These directions are dependent on how you have wired up
your motor so, some experimentation may be required.

 resolution: Stepper Resolution – MOTORplates can drive stepper motors using four
different step sizes. These can be specified with either a number or characters. Again, for
characters, the case is insensitive but they have to be enclosed in quotation marks:

Full Steps: 0 or ‘F’
Half Steps: 1 or ‘H’
Four Microsteps: 2 or ‘4M’
Eight Microsteps: 3 or ‘8M’

The illustration below shows these four different angular resolutions:

So, if your motor moves 1.8° per step with the ‘F’ resolution, then setting it to ‘H’ or 1/2 steps
will move it 0.9°, ‘M4’ will move it 0.45°, and M8 will move it 0.225°. M4 and M8 use
microstepping techniques which provide much smoother motion with more torque but at a
reduced speed. With the ‘F’ resolution, a 1.8° motor requires 200 steps for a complete revolution
of the shaft. When the resolution is set to ‘M8’, a complete revolution will 1600 steps.

 rate: Stepper Rate – MOTORplates can drive stepper motors at step rates from 1 to 2000
steps per second. Values outside of these limits will produce an error. Note that the
maximum step rate you can achieve is dependent on the motor, the motor voltage, the
load on the motor, and the acceleration rate. Be aware that step rates move the motor at
the resolution you select. For example, a step rate of 100 with a resolution of ‘F’ will
rotate the motor shaft 100•1.8° = 180° per second. If your resolution is ‘M8’, the
rotational speed will be 100• 0.225° = 22.5° per second.

 acceleration: Motor Acceleration Time – MOTORplates have the ability to gradually
ramp up (and down) to the desired motor step rate or speed. This feature prevents the
motor from stalling under high load or high speed conditions. Values for acceleration
range from 0.0 for no acceleration to 5.0 seconds. Let’s look at some acceleration plots to
better understand this feature. The following examples are based on the same settings: a
step rate of 1000 steps/second and an acceleration of two seconds.

o Example 1: A plot of step rate versus time after a stepperJOG command would
look like:

o Example 2: A stepperMOVE command requesting 10,000 steps of rotation
produces the following step rate versus time plot:

o

Note how the MOTORplate slows the motor for two seconds starting at the 8
second mark so that a total of 10,000 steps have occurred when the step rate
reaches zero.

o Example 3: A stepperMOVE command requesting 1600 steps of rotation
produces the following step rate versus time plot:

o
Note that since the motor is only moving a total of of 1600 steps it never reaches
the final rate of 1000 steps per second. Instead, it has to start slowing down when
it has rotated 800 steps.

o Example 4: The following sequence of commands is applied to motor ‘a’ on a
MOTORplate set to address 0:
MOTOR.stepperJOG(0,’a’)
timer.sleep(3)
MOTOR.stepperRATE(0,’a’,500)
timer.sleep(2)
MOTOR.stepperRATE(0,’a’,1500)

o

o Note that when you change the step rate of a rotating motor the acceleration
values are still applied.

 steps: Step Count – This value is used when moving a stepper motor a fixed number of
steps. The value can range from 1 to 65,535. The actual amount of travel will depend on
the motor and the resolution. For example, you have a motor that rotates 1.8° per full
step. If you set the resolution to ‘F’ and use a stepperMOVE command with 200 steps,
the motor will rotate 360°.

Commands

stepperCONFIG(addr,motor,dir,resolution,rate,acceleration) – this command has to be
executed to initialize a stepper motor. See the definitions above for a detailed explanation of each
argument. As an example, let’s configure a stepper motor connected to Motor Connector 2 on the
MOTORplate at address 0. We want it to move at 1500 steps per second, turn counter clockwise
with a resolution of 4 microsteps, and accelerate for 3 seconds. The configuration command to
do all this would look like:

MOTOR.stepperCONFIG(0,’B’,’CCW’,’4M’,1500,3)

Note:

1. This command only configures the motor for motion. It will not start rotating until you
issue a stepperMOVE or a stepperJOG command.

2. This command can only be issued when the motor being configured is STOPPED.

stepperMOVE(addr,motor,steps) – the command will move a stepper number a fixed number
of steps using the acceleration, step rate, direction, and resolution values specified in the
stepperCONFIG call. As an example, let’s assume that our motor has a full step resolution of
1.8° and that it has been configured using the settings described above. If we want the motor to
rotate 360° the we have to tell the motor to take 4*(360/1.8)=800 steps since our resolution is 4
microsteps:

MOTOR.stepperMOVE(0,’B’,800)

Note that it’s possible to poll or use interrupts to detect the end of a stepper MOVE. To poll, use
this command:

MOTOR.getINTflag0(0)

This will return an 8 bit number with the following information:

Bit 7: Not Used
Bit 6: Not Used
Bit 5: Stepper A MOVE Complete
Bit 4: Stepper B MOVE Complete
Bit 3: Sensor 4
Bit 2: Sensor 3
Bit 1: Sensor 2
Bit 0: Sensor 1

The snippet of python code below demonstrates a simple polling loop:

import time
import piplates.MOTORplate as M
MOTOR.stepperCONFIG(0,'a','c
MOTOR.stepperMOVE(0,'a',160

1
2
3
4
5
6
7
8

import time #import the time module
import piplates.MOTORplate as MOTOR #import the MOTORplate module
MOTOR.stepperCONFIG(0,'a','cw','M8',2000,2) #configure stepper A
MOTOR.stepperMOVE(0,'a',1600) #Start a MOVE of 1600 steps
flag=1 #Initialize flag to true
while(flag): #start loop
 time.sleep(0.1) #check every 100msec
 stat=MOTOR.getINTflag0(0) #read interrupt flags

9
10
11

 if (stat & 0x20): #isolate and test bit 5
 flag=0 #if bit 5 is true then clear the flag
print "Move Complete!" #Celebrate!

Note that reading the interrupt flag register also clears it. See the the section below to learn how
to detect the end of the move using interrupts. http://pi-plates.com/motorplate-users-
guide/#interrupts

stepperJOG(addr,motor) – this command will instruct the specified stepper to rotate
indefinitely using the acceleration, step rate, direction, and resolution values specified in the
stepperCONFIG call. For example, assume we have already configured stepper motor A on the
MOTORplate at address 0 to rotate clockwise using half-steps at a speed of 250 steps per second
with a 1 second acceleration:

MOTOR.stepperCONFIG(0,’A’,’CW’,’H’,250,1)

To start this motor rotating we simply follow the above statement with:

MOTOR.stepperJOG(0,’A’)

The motor will accelerate to 250 half steps per second moving clockwise.

stepperSTOP(addr,motor) – this will instruct the specified jogging stepper to come to a stop
using the acceleration value specified in the stepperCONFIG call. If the acceleration value is set
to zero the motor will stop instantly. Once stopped, current will continue to flow through the
windings to maintain the hold torque. For example, stepper ‘A’ on the MOTORboard at address
0 has been jogging for a few minutes and we need to stop it:

MOTOR.stepperSTOP(0,’A’)

Note that this command can only be issued when the motor is rotating at a steady step rate and
NOT during acceleration or deceleration.

stepperRATE(addr,motor,rate) – this will change the step rate of a jogging or stopped stepper
motor. If the the motor is spinning at a steady state the step rate will change using the
acceleration value specified in the stepperCONFIG call. If the motor is in the process
of accelerating, decelerating, or stopping, this command will be ignored. Recall example 4 in the
discussion of acceleration:

MOTOR.stepperCONFIG(0,’a’,’cw’,’H’,1000,2)
MOTOR.stepperJOG(0,’a’)
timer.sleep(3)
MOTOR.stepperRATE(0,’a’,500)
timer.sleep(2)
MOTOR.stepperRATE(0,’a’,1500)

Once the motor was at a stable rate of 1000 steps per second, we issued
the MOTOR.stepperRATE(0,’a’,500) command to slow it down to 500 steps per second. After
deceleration and jogging at this rate for 2 seconds we issued
the MOTOR.stepperRATE(0,’a’,1500) command to ramp it up to 1500 steps per second. Note
that these commands were issued while the motor was rotating at a steady rate.

stepperOFF(addr,motor) – remove power from a stopped motor. Use this function to reduce
your power consumption and keep your motors cool. If not used, the current will continue to
flow through the stepper windings maintaining the hold torque.

End Stops / Limit Switches

While stepper motors do not require position feedback, it is common to use a sensor to detect a
start or reference position. For example, if you use a stepper motor to move a mechanical stage,
you will likely move that stage to a known position at power up. Usually, that position is at the
end of the travel range and an end stop sensor is used to detect when the stage has moved to this
point.

Each motor connector on the MOTORplate has two general purpose digital inputs as well as two
5VDC outputs and two grounds. Together, the pins can be used to power and read up to two end
stop sensors. Let’s look at two examples:

1. A Simple Leaf Switch

When the motor-driven stage comes in contact with the arm of the switch it will cause the
normally open contacts to close. This in turn, will pull current through the 10K ohm pull
up resistor that is on the MOTORplate causing the input to switch from high to low.

2. An Optical Interrupter
Another common implementation of an end stop sensor is to use an optical interrupter.
Here’s are the connections that will allow you to interface an H21A1 to the the Sensor 1
input on the MOTORplate:

3.

The 150 ohm resistor limits the current into the emitter LED to about 20mA. This will
shine IR light onto the detector transistor which, in turn, will pull current into its collector
pin. This current will flow through a 10K pull up resistor that is part of the Sensor 1
circuit on pin 6. Under these conditions, Sensor 1 will read 0. If something is placed into
the slot and interrupts the light from the LED, the transistor will turn off, and Sensor 1
will read 1.

There are two different methods to monitor the limit switches: polling or interrupts. To poll
simply execute the function getSENSORS(addr) where addr is the address of the MOTORplate.
This will return an eight bit number with the sensor status located in the last four bits:

| Sensor Input 4 | Sensor Input 3 | Sensor Input 2 | Sensor Input 1 |

The code snippet below assumes that Sensor Input 1 is connected to an End Stop switch for
stepper motor A:

import time
import piplates.MOTORplate as M
MOTOR.stepperCONFIG(0,'a','cc
MOTOR.stepperJOG(0,'a')

1
2
3
4
5
6
7
8
9
10
11

import time #import the time module
import piplates.MOTORplate as MOTOR #import the MOTORplate module
MOTOR.stepperCONFIG(0,'a','ccw','M8',1600,2) #configure stepper A
MOTOR.stepperJOG(0,'a') #Start JOG
flag=1 #Initialize flag to true
while(flag): #start loop
 time.sleep(0.1) #check every 100msec
 stat=MOTOR.getSENSORS(0) #read interrupt flags
 if (stat & 0x1): #isolate and test bit 0
 flag=0 #if bit 0 is true then clear the flag
print "End Stop Reached!" #print notice

See the the section below to learn how to monitor sensors using interrupts.
http://pi-plates.com/motorplate-users-guide/#interrupts

DC Motors

Overview

The MOTORplate can drive up to four DC motors at voltages as high as 15V and currents as
high as 1.2A average. Below is a brief description of DC motors from Freescale Electronics.
Click HERE for an app note from Microchip for more detailed information regarding DC
motors. https://pi-plates.com/wp-content/uploads/2015/04/AN905.pdf

The DC motor is a rotating electric machine designed to operate from source of direct voltage.
The basic type is a permanent magnet DC motor. The stator of a permanent magnet DC motor is
composed of two or more permanent magnet pole pieces. The rotor is composed of windings that
are connected to a mechanical commutator. The opposite polarities of the energized winding and
the stator magnet attract and the rotor will rotate until it is aligned with the stator. Just as the
rotor reaches alignment, the brushes move across the commutator contacts and energize the next
winding.

The stator is the stationary outside part of a motor. The rotor is the inner part which rotates. In
the motor animations, red represents a magnet or winding with a north polarization, while green

represents a magnet or winding with a south polarization. Opposite, red and green, polarities
attract.

The stator of a permanent magnet DC motor is composed of two or more permanent magnet pole
pieces. The rotor is composed of windings which are connected to a mechanical commutator. In
this case the rotor has three pole pairs. The opposite polarities of the energized winding and the
stator magnet attract and the rotor will rotate until it is aligned with the stator. Just as the rotor
reaches alignment, the brushes move across the commutator contacts and energize the next
winding. In the animation the commutator contacts are brown and the brushes are dark grey. A
yellow spark shows when the brushes switch to the next winding.

Notice that the comutator is staggered from the rotor poles. If the connections of a DC motor are
reversed the motor will change directions; though it will not always work as well in both
directions.

Some good motor candidates can be found at Pololu and The RobotShop. The high power micro
gear motors from Pololu would work very well with the MOTORplate. What is especially
interesting about these is that they have versions that can be configured with encoders that can be
used with the tachometer inputs that we’ll discuss below.

Connections

Each Motor Connector can drive two DC motors for a total of 4 motors per board. The pictures
and images below illustrate how these connections should be made.

The image below shows four DC motors attached:

Or you can mix motors and have 2 DC motors and a stepper motor. The below shows a stepper
on Motor Connector 1 and the two DCs on Motor Connector 2. However, these can be flipped
with the stepper on 2 and the DCs on 1.

Control

Definitions

The following arguments and their definitions are used in the commands required to control
stepper motors with the MOTORplate.

 addr: Address – MOTORplates have jumpers on the board that allow their address to be
set to a value between 0 and 7. The location of these jumpers and their settings are
discussed above.

 motor: Motor Designator – used for selecting the motor to drive. For dc motor functions
this is a number from 1 to 4. DC motors 1 and 2 attach to Motor Connector 1 and motors
3 and 4 attach to Motor Connector 2. See the diagram above for reference.

 dir: Direction – the two accepted arguments are clockwise ‘cw’ and counter clockwise
‘ccw’ – the case is insensitive. These directions are dependent on how you have wired up
your motor so, some experimentation may be required.

 speed: Motor Speed – MOTORplates can drive DC motors with 10 bit accuracy using the
speed argument. This will be a value between 0.0 and 100.0%. Simply enter the number –
do not use the percent symbol. The actual speed that your motor can spin is dependent on
the motor, the voltage, the gear ratio if you’re using a gearbox and of course the value of
the speed variable. It is not uncommon to have tachometer feedback with DC motor – a
topic we will discuss below.

 acceleration: Motor Acceleration Time – MOTORplates have the ability to gradually
ramp up (and down) to the desired motor step rate or speed. This feature prevents the
motor from stalling under high load or high speed conditions. Values for acceleration
range from 0.0 for no acceleration to 5.0 seconds. See the illustrations above for stepper
motors.

Commands

dcCONFIG(addr,motor,dir,speed,acceleration) – this command has to be executed before
starting up one of the DC motor outputs. See the definitions below for a detailed explanation of
each argument. Here is an example of DC motor 2 on a MOTORplate at address 0 being
configured for clockwise motion at a 50% duty cycle and 2.5 seconds of acceleration:

MOTOR.dcCONFIG(0,2,’cw’,50.0,2.5)

dcSTART(addr,motor) – this command will instruct the specified DC motor to start running
using the acceleration, speed, and direction values specified in the dcCONFIG call. This function
can also be called to restart a stopped DC motor. To start the motor we configured in the last step
we issue the following command to the MOTORplate:

MOTOR.dcSTART(0,2)

dcSPEED(addr,motor,speed) – use this function to change the speed of a stopped or running
motor. If this command is issued while a motor is accelerating or decelerating it will be ignored.

dcSTOP(addr,motor) – this command will instruct the specified DC motor to come to a stop
using the acceleration value specified in the dcCONFIG call. If the acceleration value is set to
zero the motor will stop instantly.

The following code snippet provides examples of each of the above commands:

import time
import piplates.MOTORplate as M
MOTOR.dcCONFIG(0,2,'ccw',50
 #mo

1
2
3
4
5
6
7
8
9
10
11

import time #import the time module
import piplates.MOTORplate as MOTOR #import the MOTORplate module
MOTOR.dcCONFIG(0,2,'ccw',50.0,2.5) #configure dc motor 2 on the MOTORplate at address 0 being configured for
clockwise
 #motion at a 50% duty cycle and 2.5 seconds of acceleration
MOTOR.dcSTART(0,2) #Start DC motor
time.sleep(5.0) #delay 5 seconds
MOTOR.dcSPEED(0,2,100.0) #increase speed to 100%
time.sleep(10) #wait 10 seconds
MOTOR.dcSTOP(0,2) #stop the motor
time.sleep(2.5) #wait for deceleration
print "DC Motor demo completed" #print notice

The above will produce the following speed versus time profile:

Tachometers

Unlike stepper motors, DC motors do not provide predictable speeds. To regulate the speed of a
DC motor, you have to attach an encoder to it and count the pulses it produces using a
tachometer. Using software, you compare the tachometer value to your desired rotational rate
and adjust your speed up or down to correct it. Some sample encoders look like:

Using a slotted disk and an Opto Interrupter

A Pololu Micro Gear Motor with a Hall Sensor Based Encoder

Each of the Sensor Inputs on the MOTORplate can be used as 64 bit tachometers. That means
they can count up to 65,535 pulses per second. Note that most encoders produce multiple pulses
for each rotation of the motor shaft. This is important if you motor is geared down – which is
highly likely. For example the encoder shown in the Pololu motor above produces 12 pulses for
every motor rotation. And since the above motor is also geared down 100:1, the encoder will
produce 1200 pulses for each rotation of the shaft. This approach provides much higher
resolution for the feedback loop.

On the MOTORplate the tachometers are always running and require no setup. You simply
connect the output of your encoder to the input and it starts counting pulses. There are two
functions that provide a trade off between accuracy and speed:

getTACHcoarse(addr,tachnum) – the coarse tachometer value is a sixteen bit number that is
updated eight times per second and will not be as accurate as the value obtained with the
getTACHfine function since the three least significant bits are padded with zeros.

getTACHfine(addr,tachnum) – this is a much more accurate 16-bit tachometer value that is
updated once per second.

In the above functions:
addr is the address of the MOTORplate
tachnum is the Sensor Input number.

As an example, let’s look at a code snippet that uses a simple control loop to drive a DC motor
that has a slotted encoder on the main drive shaft. There are 20 slots in the encoder and we want
the motor to spin at 60RPM:

import time #load
import MOTORplate as MOTOR

gain = .1 #set th

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26

import time #load time module
import MOTORplate as MOTOR #load MOTORplate module

gain = .1 #set the loop gain
rpm=60.0 #set the desired RPM
set=20.0*rpm/60.0 #convert desired RPM to pulses per second
speed=50.0 #start with a drive of 50%
MOTOR.dcCONFIG(0,3,'cw',50,0) #config
MOTOR.dcSTART(0,3) #and start
MOTOR.getTACHfine(0,1) #flush out tachometer register
try:
 while(1):
 time.sleep(.25) #sleep 250msec
 tach=MOTOR.getTACHfine(0,1) #get fine tach value
 error=set-tach #calculate difference between measured and
 # desired speed
 speed=speed+gain*error #multiply error by loop gain and adjust speed
 if (speed>100): #perform upper and lower limit checks
 speed=100
 if (speed<0):
 speed=0
 print 'speed:',speed,'tach:',tach,'rpm',tach*3,'error:',error
 MOTOR.dcSPEED(0,3,speed) #update speed

except KeyboardInterrupt:
 MOTOR.dcSTOP(0,3) #shut down with keyboard interrupt

Other Features

Interrupts

Interrupts are an alternative to polling your Pi-Plate while waiting for it to complete a task. And
the MOTORplate can be configured to generate interrupts for a variety of events. These include:

 A change on a sensor input – useful for detecting an end stop sensor
 When a motor has reach a stable speed or step rate – useful for knowing when

acceleration or deceleration have completed
 When a motor has stopped

What follows is a description of each function and an example that demonstrates the use of
interrupts with a stepper motor.

General

intEnable(addr) – enable interrupts from the MOTORplate. GPIO22 will be pulled low if an
enabled event occurs.

intDisable(addr) – disables and clears all interrupts on the MOTORplate.

getINTflag0(addr) – returns the 8 bit interrupt flag0 value then clears the register. The
contents of this register are:
|step A STEADY|step B STEADY|step A STOPPED|step B
STOPPED|Sense1|Sense2|Sense3|Sense4|

getINTflag1(addr) – returns the8 bit interrupt flag1 value then clears the register. The
contents of this register are:
|DC 1 STEADY|DC 2 STEADY|DC 3 STEADY|DC 4 STEADY|DC 1 STOPPED|DC 2
STOPPED|DC 3 STOPPED|DC 4 STOPPED|

Stepper Specific

enablestepSTOPint(addr,motor) – generate interrupt when stepper motor has come to a
complete stop. Useful for knowing when a move command has completed or when a motor has
come to a stop under acceleration and deceleration conditions.

disablestepSTOPYint(addr,motor) – turn off the STOP interrupt

enablestepSTEADYint(addr,motor) – generate interrupt when stepper motor speed has
reached a steady rate. Useful for knowing when a rate change can be applied under acceleration
and deceleration conditions.

disablestepSTEADYint(addr,motor) – turn off the STEADY interrupt

import piplates.MOTORplate as M
import RPi.GPIO as GPIO
import random
import time

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55

import piplates.MOTORplate as MOTOR
import RPi.GPIO as GPIO
import random
import time
import os

print MOTOR.getID(1)

dummy=MOTOR.getINTflag0(1) #flush out any old interrupts
intFLAG=0
intITS=0

interruptREG0: |step A STEADY|step B STEADY|step A STOPPED|step B STOPPED|Sense1|Sense2|Sense3|Sense4|
def moveDone(channel):
 global intBITS, intFLAG
 intBITS=MOTOR.getINTflag0(1) #get flags
 intFLAG=1 #signal main program that an interrupt occurred

def newA():
 rate=random.randint(500, 2000) #randomize step rate
 acc=random.uniform(0,5.0) #randomize acceleration
 dTest=random.randint(1, 10) #randomize direction
 steps=random.randint(800,6400) #randomize rotation
 if (dTest<6):
 dir='cw'
 else:
 dir='ccw'
 MOTOR.stepperCONFIG(1,'a',dir,3,rate,acc) #Config motor
 MOTOR.stepperMOVE(1,'a',steps) #start move
 print 'Direction:',dir,'step rate:',rate,'acceleration:',acc,'step count',steps

GPIO.setmode(GPIO.BCM)
GPIO.setup(22, GPIO.IN, pull_up_down=GPIO.PUD_UP) #set up GPIO 22 as an input
GPIO.add_event_detect(22, GPIO.FALLING, callback=moveDone) # detect interrupts
MOTOR.enablestepSTOPint(1,'a') #set up to interrupt when motor a stops
MOTOR.intEnable(1) #enable interrupts on Pi-Plate
newA()

MAIN LOOP
try:
 while(1):
 if (intFLAG): #check to see if interrupt occurred
 intFLAG=0 #if INT, clear flag
 if (intBITS&0x20): #if motor A stopped then start new random MOVE
 newA()

except KeyboardInterrupt: # Clean up when program is terminated
 go=1
 while(go):
 if (GPIO.input(22) ==0):
 MOTOR.stepperOFF(0,'a')
 GPIO.cleanup() # clean up GPIO on CTRL+C exit
 go=0

56 GPIO.cleanup() # clean up GPIO on normal exit

DC Specific

enabledcSTOPint(addr,motor) – generate interrupt when DC motor has come to a complete
stop. Useful for knowing when a move command has completed or when a motor has come to a
stop under acceleration and deceleration conditions.

disabledcSTOPYint(addr,motor) – turn off the STOP interrupt

enabledcSTEADYint(addr,motor) – generate interrupt when DC motor speed has reached a
steady rate. Useful for knowing when a speed change can be applied under acceleration and
deceleration conditions.

disabledcSTEADYint(addr,motor) – turn off the STEADY interrupt

LED Control

There are also functions for controlling the power LED. These are pretty self explanatory:

setLED(addr) – turn on the LED

clrLED(addr) – turn off the LED

toggleLED(addr) – if LED is on, turn off. If LED is off, turn on.

darroll_vasek
Typewritten Text
http://pi-plates.com/motorplate-users-guide/ 3/14/2017

darroll_vasek
Typewritten Text

darroll_vasek
Typewritten Text

darroll_vasek
Typewritten Text

darroll_vasek
Typewritten Text

darroll_vasek
Typewritten Text

darroll_vasek
Typewritten Text

