EC 1 12DC...

12 V DC electronic circuit breakers

Data sheet

3023_en_B
© PHOENIX CONTACT 2014-04-09

1 Description

The EC 1 12DC... electronic circuit breakers selectively protect 12 V DC load circuits in hazardous and nonhazardous environments. A combination of an active electronic current limit for short circuits and an overload shutdown ensures that the EC 1 12DC... will quickly react to an over-current condition in the protected circuit.
Current limitation restricts fault current to 1.5-1.8 times the nominal current rating $\left(I_{N}\right)$. As a result, the EC 1 12DC... can prevent the loss of the DC output voltage sometimes experienced when a faulted circuit triggers a switched-mode power supply into self-protected output-shutdown mode. Capacitive loads of up to $75,000 \mu \mathrm{~F}$ can be protected.
The EC 1 12DC... electronic circuit breakers are available with nominal current ratings from 1 to 10 A . Local status indication is provided by a multi-color LED, and remote status indication is available via status output ($+12 \mathrm{~V}=\mathrm{OK}$). Manual on/off and reset is accomplished using the integrated slide switch. Remote reset (EC 1 12DC... S-R) and remote on/off (EC 1 12DC... S-C) versions are available.
The EC 1 12DC... can be snapped onto 35 mm mounting rails (EN 50022) for fast and easy installation. At just 12.5 mm wide, it requires only a small space on the rail.

Screw connection technology provides secure and reliable wire connection.
The integrated current distribution system is another advantage of the EC 1 12DC... circuit breakers. Wiring can be implemented easily using available busbar.

2 Features

- Selective load protection
- Current limitation on overload/short circuits
- Protection for capacitive circuits up to $75,000 \mu \mathrm{~F}$
- Current ratings from 1 to 10 A
- Manual on/off/reset slide switch
- Electronic reset option
- Electronic on/off option
- $\quad 12.5 \mathrm{~mm}$ width for minimal rail footprint
- Bridging available for line (+) and return (-)
- Remote status indication (+12 V = OK)
- Multi-color status LEDs

Make sure you always use the latest documentation. It can be downloaded at phoenixcontact.com.

This data sheet is valid for all products listed on the following page:

3 Ordering data

Products

Description	Type	Order No.	Pcs. / Pkt.
Electronic circuit breaker, 1 A, 12 V DC, on/off control input and status output	EC 1 12DC/1A S-C	3000754	1
Electronic circuit breaker, $2 \mathrm{~A}, 12 \mathrm{~V}$ DC, on/off control input and status output	EC 1 12DC/2A S-C	3000755	1
Electronic circuit breaker, $3 \mathrm{~A}, 12 \mathrm{~V}$ DC, on/off control input and status output	EC 1 12DC/3A S-C	3000756	1
Electronic circuit breaker, $4 \mathrm{~A}, 12 \mathrm{VDC}$, on/off control input and status output	EC 1 12DC/4A S-C	3000757	1
Electronic circuit breaker, $6 \mathrm{~A}, 12 \mathrm{~V}$ DC, on/off control input and status output	EC 1 12DC/6A S-C	3000758	1
Electronic circuit breaker, $10 \mathrm{~A}, 12 \mathrm{~V}$ DC, on/off control input and status output	EC 1 12DC/10A S-C	3000759	1
Electronic circuit breaker, $1 \mathrm{~A}, 12 \mathrm{~V} \mathrm{DC}$, reset input and status output	EC 1 12DC/1A S-R	3000760	1
Electronic circuit breaker, $2 \mathrm{~A}, 12 \mathrm{~V}$ DC, reset input and status output	EC 1 12DC/2A S-R	3000761	1
Electronic circuit breaker, $3 \mathrm{~A}, 12 \mathrm{~V}$ DC, reset input and status output	EC 1 12DC/3A S-R	3000762	1
Electronic circuit breaker, $4 \mathrm{~A}, 12 \mathrm{VDC}$, reset input and status output	EC 1 12DC/4A S-R	3000763	1
Electronic circuit breaker, $6 \mathrm{~A}, 12 \mathrm{VDC}$, reset input and status output	EC 1 12DC/6A S-R	3000765	1
Electronic circuit breaker, $10 \mathrm{~A}, 12 \mathrm{~V}$ DC, reset input and status output	EC 1 12DC/10A S-R	3000766	1
Accessories			
Description	Type	Order No.	Pcs. / Pkt.
Busbar, 500 mm , can be cut to length, gray	FBST 500 TMC-N GY	0901028	10

4 Technical data

i
 Data values at $\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}, \mathrm{U}_{\mathrm{S}}=12 \mathrm{~V} \mathrm{DC}$

Operating data

Nominal voltage U_{S}	12 V DC
Voltage range	$9 \ldots 18 \mathrm{~V} \mathrm{DC}$
Nominal current I_{N}	See "Current rating" on page 3
Closed-circuit current I_{0}	When on: $15 \ldots 20 \mathrm{~mA}$ typical
Shutdown time, typical	3 s at $\mathrm{I}_{\text {Load }}>1.1 \times \mathrm{I}_{\mathrm{N}}$
	$50 \mathrm{~ms} \ldots 3 \mathrm{~s}$ at $\mathrm{I}_{\text {Load }}>1.8 \mathrm{I}_{\mathrm{N}}\left(\right.$ or $\left.1.5 \times \mathrm{I}_{\mathrm{N}}\right)$

Load circuit	
Load output	Power MOSFET switching output (positive switching)
Overload shutdown	Typically $1.1 \times \mathrm{I}_{\mathrm{N}}\left(1.05 \ldots 1.35 \times \mathrm{I}_{\mathrm{N}}\right)$

Connection data						
Line+/Load+/0 V						
Thread size	M4					
Conductor size						
1 solid or stranded conductor	$0.5 \ldots 10 \mathrm{~mm}^{2}$ with or without ferrule					
2 solid or stranded conductors with same cross-section	$0.5 \ldots 4 \mathrm{~mm}^{2}$ without ferrule; $0.5 \ldots 2.5 \mathrm{~mm}^{2}$ with ferrule					
2 stranded conductors with TWIN ferrule	$0.5 \ldots 6 \mathrm{~mm}^{2}$					
Stripping length	10 mm					
Tightening torque	$1.5 \ldots 1.8 \mathrm{Nm}$					
Signal connections						
Thread size	M3					
Stranded conductor size with ferrule	$0.25 \ldots 2.5 \mathrm{~mm}^{2}$					
Stripping length	8 mm					
Tightening torque	$0.5 \ldots 0.6 \mathrm{Nm}$					
General data						
Mounting	DIN rail in acc. with EN 50072 (NS 35×7.5)					
Degree of protection	IP20					
Temperature range, operation						
Ordinary location	$-20 \ldots 60^{\circ} \mathrm{C}$					
Hazardous location (Class I, Div. 2)	$0 \ldots 25^{\circ} \mathrm{C}$					
Temperature range, storage	$-20 \ldots 70^{\circ} \mathrm{C}$					
Weight	65 g					
Status and control						
Status LED	Green: power applied Orange: overload or short circuit leading to electronic shutdown condition Red: electronically disconnected; low voltage ($<3.25 \mathrm{~V}$); load circuit/powerMOSFET off Off: under voltage or no power; manually switched off					
Terminals						
Gnd (-)	Pin 3					
NC signal contacts	-					
NO signal contacts	-					
Remote control/reset	Pin 21/22					
Status output	Pin 23					
Switching capacity I_{CN}	Active current limitation					
Expected life with $1 \times \mathrm{I}_{\mathrm{N}}$	10000 cycles					
Current rating						
Current rating, $\mathrm{I}_{\mathrm{N}}(\mathrm{A})$	1	2	3	4	6	10
Voltage drop, typical, at $\mathrm{I}_{\mathrm{N}}(\mathrm{mV})$	80	130	80	100	130	150
Active current limitation, typical	$1.8 \times{ }^{\text {N }}$	$1.8 \times \mathrm{I}_{\mathrm{N}}$	$1.8 \times \mathrm{I}_{\mathrm{N}}$	$1.8 \times{ }^{\text {N }}$	$1.8 \times \mathrm{I}_{\mathrm{N}}$	$1.5 \times \mathrm{I}_{\mathrm{N}}$
Maximum load current at $40^{\circ} \mathrm{C}$ at 100% duty cycle (A)	1	2	3	4	6	10
Maximum load current at $50^{\circ} \mathrm{C}$ at 100% duty cycle (A)	1	2	3	4	5	9
Approval/conformance						
Vibration	3 g tested in acc. with IEC 60068-2-6, test Fc					
Conformance with EMC Directive 2004/108/EC	Noise emission: EN 61000-6-3					
Insulation coordination (IEC 60934)	$0.5 \mathrm{kV} / 2$ pollution degree 2, increased insulation in actuation area					

Approval/conformance	
Dielectric strength	18 VDC maximum (load circuit)
Insulation resistance (off state)	None (electronic shutdown only)
Approvals	C ϵ
	90 Solid state overcurrent protector (UL 2367)
	TU Class I, Division 2, Groups A,B,C,D T5 (UL 1604)

Voltage drop, current limitation, maximum load current

Nominal current I_{N}	Voltage drop U_{ON} at I_{N} (typical)	Active current limitation (typical)	Maximum load current at 100\% on duty	
			$\mathrm{T}_{\mathrm{A}}=40^{\circ} \mathrm{C}$	$\mathrm{T}_{\mathrm{A}}=50^{\circ} \mathrm{C}$
1A	80 mV	$1.8 \times \mathrm{I}_{\mathrm{N}}$	1 A	1 A
2 A	130 mV	$1.8 \times \mathrm{I}_{\mathrm{N}}$	2 A	2 A
3 A	80 mV	$1.8 \times \mathrm{I}_{\mathrm{N}}$	3 A	3 A
4 A	100 mV	$1.8 \times \mathrm{I}_{\mathrm{N}}$	4 A	4 A
6 A	130 mV	$1.8 \times \mathrm{I}_{\mathrm{N}}$	6 A	5 A
10 A	150 mV	$1.5 \times \mathrm{I}_{\mathrm{N}}$	10 A	9 A

\bullet When mounted side-by-side without airflow between the electronic circuit breakers, current load should be reduced to 80% of rated load when operating at a 100% duty cycle.

Figure 1 Dimensions

Figure 2 Circuit diagram

5 Operating characteristics

5.1 Information required for UL approval

WARNING:

Exposure to some chemicals may degrade the sealing properties of materials used in EC 1 12DC.... These products use the following materials:
Sealing material:

- Generic name: Modified diglycidyl ether of bisphenol A
- Supplier: Fine Polymers Corporation
- Type: Epi Fine 4616L-160PK

Casing material:

- Generic name: Liquid crystal polymer
- Supplier: Sumitomo Chemical
- Type: E4008, E4009 or E6008

Periodically inspect the EC 1 12DC... for any degradation of properties and replace if degradation is found.

WARNING: Explosion hazard

Do not disconnect equipment unless power has been removed or the area is known to be nonhazardous.
Substitution of any components may impair suitability for hazardous locations.

Figure 3 UL-approved package slip

Electronic Circuit Protector

 EC-E, EC-E1, EC-E4, EC1

This device is suitable for use in Class I, Div 2, Groups A, B, C, D;
TC T5; UL File\# E324415
Warnings:

1. Remove power before disconnecting device.
2. Components substitutions may impair suitability of Class I, Div 2
3. Chemical exposure may degrade internal relay's sealing property in the EC-E1 and EC-E4 products only.

TS

Non-hazardous use - UL File\# E317172
Refer to data sheet / installation guidelines for installation and safety instructions.

> PHOENIX CONTACT GmbH \& Co.KG
> Flachsmarktstraße 8
> 32825 Blomberg Germany
> Phone +49-(0)5235-3-00
> Fax $+49-(0) 5235-3-41200$

5.2 Time/current characteristics

The trip time is typically 3 s in the range between 1.1 and $1.8 \mathrm{xI}_{\mathrm{N}}{ }^{1}$.
Electronic current limitation typically occurs at $1.8 \times I_{N}$ which means that, under all overload conditions (independent of the power supply and the resistance of the load circuit), the maximum overload before disconnection will not exceed $1.8 \times I_{N}$ times the current rating. Trip time is between 100 ms and 3 s (depending on overload or at short circuit).
Without this current limitation, a considerably higher overload current would flow in the event of an overload or short circuit.

Figure 4 Time/current characteristic curve

[^0]
6 Installation

The EC 1 12DC... features an integrated power distribution system.

Insert bridges and protection slides to be flush with housing sides.

$12.5 \times \mathrm{n}=$ width of protector block e.g., $12.5 \times 5=62.5 \mathrm{~mm}$

$1 \mathrm{I}_{\mathrm{MAX}}=50 \mathrm{~A}$ when connected with a single input wire to the center of the bar $\mathrm{I}_{\mathrm{MAX}}=63$ A when connected with two input wires, one at each end of the bar

Figure 5 Mounting options and components

NOTE:

A 0 V connection is required for the EC $112 \mathrm{DC} . .$.
A maximum of 10 insertion/removal cycles are allowed for busbars.
When mounted side-by-side without airflow between the electronic circuit breakers, current load should be reduced to 80% of rated load when operating at a 100% duty cycle.
Busbars should be interrupted and re-connected every 10 devices.

1

WARNING:

Ensure that all personnel are clear before applying a reset to multiple circuit breakers. While breakers that are on will be unaffected, any breakers that were electronically tripped due to an overload condition will be turned on.

When the breaker is on, 12 V DC is available at the Status Output (terminal 23) (see Figure 2 for terminal locations).

Figure 6 EC 1 12DC... S-R signal inputs/outputs
EC 1 12DC... S-R breakers with remote reset option may be remotely reset by the trailing edge of a +12 V DC pulse applied to the Reset Input (terminal 22).

Figure 7 EC 1 12DC... S-C signal inputs/outputs
EC 1 12DC... S-C breakers with remote control option may be turned on/off by cycling the +12 V DC applied to terminal 21.

[^0]: 1 Current limitation is typically $1.8 \times \mathrm{I}_{\mathrm{N}}$ times rated current at $I_{N}=0.5 \mathrm{~A}$ to 6 A
 Current limitation is typically $1.5 \mathrm{xI}_{\mathrm{N}}$ times rated current at $\mathrm{I}_{\mathrm{N}}=8 \mathrm{~A}$ or 10 A

