M74HC4538

DUAL RETRIGGERABLE MONOSTABLE MULTIVIBRATOR

- HIGH SPEED :
$\mathrm{t}_{\mathrm{PD}}=25 \mathrm{~ns}$ (TYP.) at $\mathrm{V}_{\mathrm{CC}}=6 \mathrm{~V}$
- LOW POWER DISSIPATION:

STAND BY STATE :
$\mathrm{I}_{\mathrm{CC}}=4 \mu \mathrm{~A}$ (MAX.) at $\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$
ACTIVE STATE :
$\mathrm{I}_{\mathrm{CC}}=200 \mu \mathrm{~A}$ (TYP.) at $\mathrm{V}_{\mathrm{CC}}=6 \mathrm{~V}$

- HIGH NOISE IMMUNITY:
$\mathrm{V}_{\mathrm{NIH}}=\mathrm{V}_{\mathrm{NIL}}=28 \% \mathrm{~V}_{\mathrm{CC}}(\mathrm{MIN}$.
- SYMMETRICAL OUTPUT IMPEDANCE:
$\left|\mathrm{I}_{\mathrm{OH}}\right|=\mathrm{I}_{\mathrm{OL}}=4 \mathrm{~mA}(\mathrm{MIN})$
- BALANCED PROPAGATION DELAYS: $\mathrm{t}_{\mathrm{PLH}} \cong \mathrm{t}_{\mathrm{PHL}}$
- WIDE OPERATING VOLTAGE RANGE: $\mathrm{V}_{\mathrm{CC}}(\mathrm{OPR})=2 \mathrm{~V}$ to 6 V
- WIDE OUTPUT PULSE WIDTH RANGE :
$\mathrm{t}_{\text {WOUT }}=120 \mathrm{~ns} \sim 60 \mathrm{~s}$ OVER AT $\mathrm{V}_{\mathrm{CC}}=4.5 \mathrm{~V}$
- PIN AND FUNCTION COMPATIBLE WITH 74 SERIES 4538

DESCRIPTION

The M74HC4538 is an high speed CMOS MONOSTABLE MULTIVIBRATOR fabricated with silicon gate $\mathrm{C}^{2} \mathrm{MOS}$ technology.
Each multivibrator features both a negative A, and a positive B, edge triggered input, either of which can be used as an inhibit input. Also included is a clear input that when taken low resets the one shot. The monostable multivibrator are

ORDER CODES

PACKAGE	TUBE	T \& R
DIP	M74HC4538B1R	
SOP	M74HC4538M1R	M74HC4538RM13TR
TSSOP		M74HC4538TTR

retriggerable. That is, they may be triggered repeatedly while their outputs are generating a pulse and the pulse will be extended. Pulse width stability over a wide range of temperature and supply is achieved using linear CMOS techniques.
The output pulse equation is simply :
$P W=0.7(R)(C)$ where $P W$ is in seconds, R in Omhs and C is in Farads.
All inputs are equipped with protection circuits against static discharge and transient excess voltage.

PIN CONNECTION AND IEC LOGIC SYMBOLS

INPUT AND OUTPUT EQUIVALENT CIRCUIT

PIN DESCRIPTION

PIN No	SYMBOL	NAME AND FUNCTION
1,15	$1 \mathrm{~T} 1,2 \mathrm{~T} 1$	External Capacitor Con- nections
2,14	$1 \mathrm{~T} 2,2 \mathrm{~T} 2$	External Resistor/ Capacitor Connections
3,13	$\overline{1 \mathrm{CD}}, \overline{2 \mathrm{CD}}$	Direct Reset Inputs (Active Low)
4,12	$1 \mathrm{~A}, 2 \mathrm{~A}$	Trigger Inputs (LOW to HIGH, Edge-Triggered)
5,11	$1 \overline{\mathrm{~B}}, 2 \overline{\mathrm{~B}}$	Trigger Inputs (HIGH to LOW, Edge Triggered)
6,10	Q 1, Q2	Pulse Outputs
7,9	$\overline{\mathrm{Q} 1, \overline{\mathrm{Q} 2}}$	Complementary Pulse Outputs
8	GND	Ground (0V)
16	Vcc	Positive Supply Voltage

TRUTH TABLE

INPUTS			OUTPUTS		NOTE
\mathbf{A}	$\overline{\mathbf{B}}$	$\overline{\mathbf{C D}}$	\mathbf{Q}	$\overline{\mathbf{Q}}$	
Γ	H	H	$\breve{\mathrm{Q}}$	$\boxed{ }-$	OUTPUT ENABLE
X	L	H	L	H	INHIBIT
H	X	H	L	H	INHIBIT
L	L	H	$\boxed{\mathrm{L}}$	L	OUTPUT ENABLE
X	X	L	L	H	INHIBIT
X: Don't Care					

SYSTEM DIAGRAM

This logic diagram has not be used to estimate propagation delays

TIMING CHART

BLOCK DIAGRAM

[^0]
FUNCTIONAL DESCRIPTION

STAND-BY STATE
The external capacitor,Cx, is fully charged to Vcc in the stand-by state. Hence, before triggering, transistor Qp and Qn (connected to the Rx/Cx node) are both turned-off. The two comparators that control the timing and the two reference voltage sources stop operating. The total supply current is therefore only leakage current.

TRIGGER OPERATION

Triggering occurs when :
1 st) A is "LOW" and \bar{B} has a falling edge;
2 nd) \bar{B} is "HIGH" and A has a rising edge;
After the multivibrator has been retriggered comparator C1 and C2 start operating and Qn is turned on. Cx then discharges through Qn. The voltage at the node Rx/Cx external falls.
When it reaches $\mathrm{V}_{\text {REFL }}$ the output of comparator C1 becomes low. This in turn reset the flip-flop and Qn is turned off.
At this point C 1 stops functioning but C 2 continues to operate.
The voltage at R/C external begins to rise with a time constant set by the external components Rx , Cx.

Triggering the multivibrator causes Q to go high after internal delay due to the flip-flop and the gate. Q remains high until the voltage at R / C external rises again to $\mathrm{V}_{\text {REFH }}$. At this point C 2 output goes low and G goes low. C2 stop
operating. That means that after triggering when the voltage R/C external returns to $\mathrm{V}_{\text {REFH }}$ the multivibrator has returned to its MONOSTABLE STATE. In the case where Rx . Cx are large enough and the discharge time of the capacitor and the delay time in the I.C. can be ignored, the width of the output pulse tw (out) is as follows:

$$
\mathrm{t}_{\mathrm{W}(\mathrm{OUT})}=0.72 \mathrm{Cx} \cdot \mathrm{Rx}
$$

RE - TRIGGERED OPERATION

When a second triggere pulse follows the first its effect will depend on the state of the multivibrator. If the capacitor Cx is being charged the voltage level of Rx/Cx external falls to $V_{\text {REFL }}$ again and Q remains High i.e. the retrigger pulse arrives in a time shorter than the period $R x$. Cx seconds, the capacitor charging time constant. If the second trigger pulse is very close to the initial trigger pulse it is ineffective ; i.e. the second trigger must arrive in the capacitor discharge cycle to be ineffective; Hence the minimum time for a second trigger to be effective, trr (MIN.) depends on Vcc and Cx

RESET OPERATION

$\overline{\mathrm{CD}}$ is normally high. If $\overline{\mathrm{CD}}$ is low, the trigger is not effective because Q output goes low and trigger control flip-flop is reset.
Also transistor Op is turned on and Cx is charged quickly to Vcc. This means if $\overline{\mathrm{CD}}$ input goes low the IC becomes waiting state both in operating and non operating state.

ABSOLUTE MAXIMUM RATINGS

Symbol	Parameter	Value	Unit
V_{CC}	Supply Voltage	-0.5 to +7	V
$\mathrm{~V}_{\mathrm{I}}$	DC Input Voltage	-0.5 to $\mathrm{V}_{\mathrm{CC}}+0.5$	V
$\mathrm{~V}_{\mathrm{O}}$	DC Output Voltage	-0.5 to $\mathrm{V}_{\mathrm{CC}}+0.5$	V
I_{IK}	DC Input Diode Current	± 20	mA
I_{OK}	DC Output Diode Current	± 20	mA
I_{O}	DC Output Current	± 25	mA
I_{CC} or $\mathrm{I}_{\mathrm{GND}}$	DC V_{CC} or Ground Current	± 50	mA
P_{D}	Power Dissipation	$500\left(^{*}\right)$	mW
$\mathrm{T}_{\text {stg }}$	Storage Temperature	-65 to +150	${ }^{\circ} \mathrm{C}$
T_{L}	Lead Temperature (10 sec)	300	${ }^{\circ} \mathrm{C}$

[^1]RECOMMENDED OPERATING CONDITIONS

Symbol	Parameter		Value	Unit
V_{CC}	Supply Voltage		2 to 6	V
V_{1}	Input Voltage		0 to V_{CC}	V
V_{O}	Output Voltage		0 to V_{CC}	V
$\mathrm{T}_{\text {op }}$	Operating Temperature		-55 to 125	${ }^{\circ} \mathrm{C}$
$\mathrm{t}_{\mathrm{r}}, \mathrm{t}_{\mathrm{f}}$	Input Rise and Fall Time ($\overline{\mathrm{CD}}$ only)	$\mathrm{V}_{\mathrm{CC}}=2.0 \mathrm{~V}$	0 to 1000	ns
		$\mathrm{V}_{\mathrm{CC}}=4.5 \mathrm{~V}$	0 to 500	ns
		$\mathrm{V}_{\mathrm{CC}}=6.0 \mathrm{~V}$	0 to 400	ns
Cx	External Capacitor		NO LIMITATION	pF
Rx	External Resistor	Vcc < 3V	5 K to 1M	Ω
		$\mathrm{Vcc} \geq 3 \mathrm{~V}$	1 K to 1M	

The Maximum allowable values of Cx and Rx are a function of leakage of capacitor Cx , the leakage of device and leakage due to the board layout and surface resistance. Susceptibility to externally induced noise may occur for $\mathrm{Rx}>1 \mathrm{M} \Omega$

DC SPECIFICATIONS

Symbol	Parameter	Test Condition		Value							Unit
		$\begin{aligned} & \mathrm{V}_{\mathrm{Cc}} \\ & (\mathrm{~V}) \end{aligned}$		$\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$			-40 to $85^{\circ} \mathrm{C}$		-55 to $125^{\circ} \mathrm{C}$		
				Min.	Typ.	Max.	Min.	Max.	Min.	Max.	
V_{IH}	High Level Input Voltage	2.0		1.5			1.5		1.5		V
		4.5		3.15			3.15		3.15		
		6.0		4.2			4.2		4.2		
$\mathrm{V}_{\text {IL }}$	Low Level Input Voltage	2.0				0.5		0.5		0.5	V
		4.5				1.35		1.35		1.35	
		6.0				1.8		1.8		1.8	
V_{OH}	High Level Output Voltage	2.0	$\mathrm{I}_{\mathrm{O}}=-20 \mu \mathrm{~A}$	1.9	2.0		1.9		1.9		V
		4.5	$\mathrm{I}_{\mathrm{O}}=-20 \mu \mathrm{~A}$	4.4	4.5		4.4		4.4		
		6.0	$\mathrm{I}_{\mathrm{O}}=-20 \mu \mathrm{~A}$	5.9	6.0		5.9		5.9		
		4.5	$\mathrm{I}_{\mathrm{O}}=-4.0 \mathrm{~mA}$	4.18	4.31		4.13		4.10		
		6.0	$\mathrm{I}_{\mathrm{O}}=-5.2 \mathrm{~mA}$	5.68	5.8		5.63		5.60		
$\mathrm{V}_{\text {OL }}$	Low Level Output Voltage	2.0	$\mathrm{I}_{\mathrm{O}}=20 \mu \mathrm{~A}$		0.0	0.1		0.1		0.1	V
		4.5	$\mathrm{I}_{\mathrm{O}}=20 \mu \mathrm{~A}$		0.0	0.1		0.1		0.1	
		6.0	$\mathrm{I}_{\mathrm{O}}=20 \mu \mathrm{~A}$		0.0	0.1		0.1		0.1	
		4.5	$\mathrm{I}_{\mathrm{O}}=4.0 \mathrm{~mA}$		0.17	0.26		0.33		0.40	
		6.0	$\mathrm{I}_{\mathrm{O}}=5.2 \mathrm{~mA}$		0.18	0.26		0.33		0.40	
1	Input Leakage Current	6.0	$\mathrm{V}_{1}=\mathrm{V}_{\text {CC }}$ or GND			± 0.1		± 1		± 1	$\mu \mathrm{A}$
I	Input Leakage Current	6.0	$\begin{gathered} \mathrm{V}_{\mathrm{I}}=\mathrm{V}_{\mathrm{CC}} \text { or GND } \\ \text { Rext/Cext } \end{gathered}$			± 0.1		± 1		± 1	$\mu \mathrm{A}$
I_{CC}	Quiescent Supply Current	6.0	$\mathrm{V}_{1}=\mathrm{V}_{\text {CC }}$ or GND			4		40		80	$\mu \mathrm{A}$
I_{CC}	Quiescent Supply Current	2.0	$\begin{gathered} \mathrm{V}_{\mathrm{I}}=\mathrm{V}_{\mathrm{CC}} \text { or } \mathrm{GND} \\ \text { Pin } 2 \text { or } 14 \\ \mathrm{~V}_{\mathrm{IN}}=\mathrm{V}_{\mathrm{CC}} / 2 \end{gathered}$		40	120		160		200	$\mu \mathrm{A}$
		4.5			0.2	0.3		0.4		0.6	mA
		6.0			0.3	0.6		0.8		1.0	mA

M74HC4538

AC ELECTRICAL CHARACTERISTICS ($\mathrm{C}_{\mathrm{L}}=50 \mathrm{pF}$, Input $\mathrm{t}_{\mathrm{r}}=\mathrm{t}_{\mathrm{f}}=6 \mathrm{~ns}$)

Symbol	Parameter	Test Condition			Value							Unit
		V_{Cc} (V)			$\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$			-40 to $85^{\circ} \mathrm{C}$		-55 to $125^{\circ} \mathrm{C}$		
					Min.	Typ.	Max.	Min.	Max.	Min.	Max.	
${ }_{\text {t }}^{\text {LLH }}{ }^{\text {t }}$ THL	Output Transition Time	2.0				30	75		95		110	ns
		4.5				8	15		19		22	
		6.0				7	13		16		19	
$\mathrm{t}_{\text {PLH }} \mathrm{t}_{\text {PHL }}$	Propagation Delay Time ($\mathrm{A}, \overline{\mathrm{B}}-\mathrm{Q}, \overline{\mathrm{Q}}$)	2.0				120	250		315		375	ns
		4.5				30	50		63		75	
		6.0				25	43		54		64	
$\mathrm{t}_{\text {PLH }} \mathrm{t}_{\text {PHL }}$	Propagation Delay Time$(\overline{C D}-Q, \bar{Q})$	2.0				100	195		245		295	ns
		4.5				25	39		49		59	
		6.0				20	33		42		50	
twout	Output Pulse Width	2.0	$C x=0$	$\mathrm{Rx}=5 \mathrm{~K} \Omega$		540	1200		1500		1800	ns
		4.5		$\mathrm{Rx}=1 \mathrm{~K} \Omega$		180	250		320		375	
		6.0		$\mathrm{Rx}=1 \mathrm{~K} \Omega$		150	200		260		320	
		2.0	$\begin{gathered} \mathrm{Cx}=0.01 \mu \mathrm{~F} \\ \mathrm{Rx}=10 \mathrm{~K} \Omega \end{gathered}$		70	83	96	70	96	70	96	$\mu \mathrm{s}$
		4.5			69	77	85	69	85	69	85	
		6.0			69	77	85	69	85	69	85	
		2.0	$\begin{aligned} & \mathrm{Cx}=0.1 \mu \mathrm{~F} \\ & \mathrm{Rx}=10 \mathrm{~K} \Omega \end{aligned}$		0.67	0.75	0.83	0.67	0.83	0.67	0.9	ms
		4.5			0.67	0.73	0.77	0.67	0.77	0.67	0.8	
		6.0			0.67	0.73	0.77	0.67	0.77	0.67	0.8	
$\Delta t_{\text {WOUT }}$	Output Pulse Width Error Between Circuits in Same Package					± 1						\%
${ }^{t}{ }_{W}(\mathrm{H})$ ${ }^{t} W(L)$	Minimum Pulse Width ($\mathrm{A}, \overline{\mathrm{B}}$)	2.0				30	75		95		110	ns
		4.5				8	15		19		22	
		6.0				7	13		16		19	
${ }^{\text {w }}$ (L)	Minimum Pulse Width (CD)	2.0				30	75		95		110	ns
		4.5				8	15		19		22	
		6.0				7	13		16		19	
$\mathrm{t}_{\text {REM }}$	Minimum Clear Removal Time	2.0				0	15		15		20	ns
		4.5				0	5		5		7	
		6.0				0	5		5			
t_{rr}	Minimum Retrigger Time	2.0	$\begin{gathered} \mathrm{Cx}=0.1 \mu \mathrm{~F} \\ \mathrm{Rx}=1 \mathrm{~K} \Omega \end{gathered}$			380						ns
		4.5				92						
		6.0				72						
		2.0	$\begin{gathered} C x=0.01 \mu \mathrm{~F} \\ \mathrm{Rx}=1 \mathrm{~K} \Omega \end{gathered}$			6						$\mu \mathrm{s}$
		4.5				1.4						
		6.0				1.2						

CAPACITIVE CHARACTERISTICS

Symbol	Parameter	Test Condition		Value							Unit
		V_{Cc} (V)		$\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$			-40 to $85^{\circ} \mathrm{C}$		-55 to $125^{\circ} \mathrm{C}$		
				Min.	Typ.	Max.	Min.	Max.	Min.	Max.	
$\mathrm{C}_{\text {IN }}$	Input Capacitance	5.0			5	10		10		10	pF
$\mathrm{C}_{\text {PD }}$	Power Dissipation Capacitance (note 1)	5.0			70						pF

1) $\mathrm{C}_{P D}$ is defined as the value of the IC's internal equivalent capacitance which is calculated from the operating current consumption without load. (Refer to Test Circuit); Average operating current can be obtained by the following equation. $I_{C C(o p r)}=C_{P D} \times V_{C C} \times f_{I N}+I_{C C}$ Duty/100 + Ic/2(per monostable) (l_{cc} : Active Supply current) (Duty : \%)

TEST CIRCUIT

[^2]SWITCHING CHARACTERISTICS TEST WAVEFORM (f=1MHz; 50% duty cycle)

SO-16 MECHANICAL DATA

DIM.	mm.			inch		
	MIN.	TYP	MAX.	MIN.	TYP.	MAX.
A			1.75			0.068
a1	0.1		0.2	0.003		0.007
a2			1.65			0.064
b	0.35		0.46	0.013		0.018
b1	0.19		0.25	0.007		0.010
C		0.5			0.019	
c1	45° (typ.)					
D	9.8		10	0.385		0.393
E	5.8		6.2	0.228		0.244
e		1.27			0.050	
e3		8.89			0.350	
F	3.8		4.0	0.149		0.157
G	4.6		5.3	0.181		0.208
L	0.5		1.27	0.019		0.050
M			0.62			0.024
S	8° (max.)					

TSSOP16 MECHANICAL DATA

DIM.	mm.			inch		
	MIN.	TYP	MAX.	MIN.	TYP.	MAX.
A			1.2			0.047
A1	0.05		0.15	0.002	0.004	0.006
A2	0.8	1	1.05	0.031	0.039	0.041
b	0.19		0.30	0.007		0.012
c	0.09		0.20	0.004		0.0089
D	4.9	5	5.1	0.193	0.197	0.201
E	6.2	6.4	6.6	0.244	0.252	0.260
E1	4.3	4.4	4.48	0.169	0.173	0.176
e		0.65 BSC			0.0256 BSC	
K	0°		$8 \circ$	$0{ }^{\circ}$		8
L	0.45	0.60	0.75	0.018	0.024	0.030

Information furnished is believed to be accurate and reliable. However, STMicroelectronics assumes no responsibility for the consequences of use of such information nor for any infringement of patents or other rights of third parties which may result from its use. No license is granted by implication or otherwise under any patent or patent rights of STMicroelectronics. Specifications mentioned in this publication are subject to change without notice. This publication supersedes and replaces all information previously supplied. STMicroelectronics products are not authorized for use as critical components in life support devices or systems without express written approval of STMicroelectronics.
© The ST logo is a registered trademark of STMicroelectronics
© 2001 STMicroelectronics - Printed in Italy - All Rights Reserved
STMicroelectronics GROUP OF COMPANIES
Australia - Brazil - China - Finland - France - Germany - Hong Kong - India - Italy - Japan - Malaysia - Malta - Morocco Singapore - Spain - Sweden - Switzerland - United Kingdom
© http://www.st.com

[^0]: (1) Cx, Rx, Dx are external components
 (2) Dx is a clamping diode.

 The external capacitor is charged to Vcc in the stand-by-state, i.e. no trigger. When the supply voltage is turned off Cx is discharged mainly trough an internal parasitic diode(see figures). If Cx is sufficiently large and Vcc decreases rapidly, there will be some possibility of damaging the I.C. with a surge current or latch-up. If the voltage supply filter capacitor is large enough and Vcc decrease slowly, the surge current is automatically limited and damage to the I.C. is avoided. The maximum forward current of the parasitic diode is approximately 20 mA . In cases where Cx is large the time taken for the supply voltage to fall to 0.4 Vcc can be calculated as follows :
 $\mathrm{t}_{\mathrm{f}} \geq(\mathrm{Vcc}-0.7) \times \mathrm{Cx} / 20 \mathrm{~mA}$
 In cases where t_{f} is too short an external clamping diode is required to protect the I.C. from the surge current.

[^1]: Absolute Maximum Ratings are those values beyond which damage to the device may occur. Functional operation under these conditions is not implied
 (*) 500 mW at $65{ }^{\circ} \mathrm{C}$; derate to 300 mW by $10 \mathrm{~mW} /{ }^{\circ} \mathrm{C}$ from $65^{\circ} \mathrm{C}$ to $85^{\circ} \mathrm{C}$

[^2]: $C_{L}=50 p F$ or equivalent (includes jig and probe capacitance)
 $R_{T}=Z_{\text {OUT }}$ of pulse generator (typically 50Ω)

