CCS C Compiler Manual

PCB /PCM/PCH

' of o
)\

October 2016

in

ALL RIGHTS RESERVED.
Copyright Custom Computer Services, Inc. 2016

CCS C Compiler

Table of Contents

OVBIVIBWttt ettt et ettt e e e e ettt e e e e e e e e e et e e e e e e ee s st eeeeeesssaan s aeseeeessaaanaeseessssannnseeaseennees
PCB, PCM and PCH Overview
Installationeevvvvvveveveveeenennns
Technical Support...................
DireCtorieSvvvvvvvvvevvvrrerrvennnnns
File Formats
Invoking the Command Line Compiler
PCW Overview

Debugging Windows
Status Barcccoeevveiiiiiinn,
Output Messagescccceevuene

Program Syntax............ccoceeeeennn.
Overall Structurecceeenne
Comment.......cccoeovvenirieniennins
Trigraph Sequences................
Multiple Project Files.
Multiple Compilation Units
FUIL EXAMPIE PrOGIaMttt ettt e e e e ettt e e e e e e e bbb e e e e e e e e e ananeees

Statements
Statements
) S PO SRU P OPRTPPOURRIN

Expressions
Constants
Identifiers...........
Operators
Operator Precedence

Data Definitionsccevvvennn..
Data Definitions
Type Specifiers

Table of Contents

Y L O U= 111 1= £ U PRRR
S o[=T = (=T B Y L= TR PRTTS
Structures and Unions
typedef
Non-RAM Data Definitions
Using Program Memory for Data
Named RegISters..........ccouvvveeeeeiiiiiiiieee e
Function Definition
Function Definition...................
Overloaded Functions
Reference Parameters .
(D= = L L =T = L (=] (=T £ PP PPRSRRPPRPPRPPR
Variable ArQUMENT LISTSceiiiiieeeiiiiie sttt ettt e e st e st e e st e e st e e e snte e e e snteeeeenneeeeennnee
Functional Overview

CANBUS ...t

Data Eeprom
Data Signal Modulator............. .
EXEEINAI MEIMOIY ...ttt ettt e bt e et et e e e e e s nnn e e e e anbneeeans
GENETAl PUIPOSE 1O .ttt ettt et n e
Internal LCD "
INEINAL OSCHIATON ...t e e s snr e
INEEITUPES .ttt
Low Voltage Detect.................
PMP/EPMPccoviiiiiiiiinen,
Power PWMccccceeeiniiinnen.
Program Eeprom.....................

Timer2
Timer3
Timer4

TimerA
TimerB

CCS C Compiler

WDT OF WALCh DOG TIMEN ..ttt ettt et e e e e e 79
1 CT g0 oL A =TT o] (=T [IR SUPUPERRT 80
Y 11T 1o 0 1L PR
PreProcessor
PRE-PROCESSOR DIRECTORYoitiiitiiie ittt ettt sttt sttt e e snbr e e ssaeeessnaeeesannneeeans 83
- (o (o [1= PP PP P PUPRR 83
#asm #endasm #asm asis ...85

#ifdef
e To oo (RN U 1] o To PP PPPPPRP 103
#import (options)
#include.................
#inline................

Table of Contents

22 0] 1 To] 113 RS UTUUPEPURN 121
o] (o) {11 PP PP PP PPPRP PRI 122
e (] oY PP PPPPPPPPPPPPPPPIRE 123

2T oL L - L (= ST SRRSO PP OPPRRRPRPI
BSBIIANIZE oo

_unicode............

FEUSE CAPTUIE ..ottt ettt et et et et et et et e bt et et et bt e nbn e e st e e nene e e e

Yo (= R PRTRRR PR

#use dynamic_memory

NI = 1) A (o F U PUTPPP

FEUSE FIXEO_IO 1.ttt ettt e et e e

HUSE I2C...cciiiiiiiiiiee e,

#use profile()coovevviieeeiinnnn,

H#USE PWM() wovveriiieiiieeee e

H#USE IS232 ..

HFUSE MOS oo

HUSE SPI e

#use standard_io....................

#use timerccccceevviiiieeneen,

FUSE LOUCKHPAT. ...ttt e e

V= 4 o] oo T PP U PP PPPPR PRI

#word

274] (o T - o SRR
BUIIE-IN FUNCLIONS ...t e e e e e et e e e e e e e e e bbb e e e e e e e e e nanenees

cos() tan() asin() acos() atan() sinh() cosh() tanh() atan2()
adc_done()
adc_read().........158
adc_status()
adc_write()
assert()......coee...
= 1= PP

pin_select()
atoi() o1 (0] [I (o 1C 721 () O T PP O TP RO PPPPPTP
AL ClEAT_INTEITUDPTS() «eeieteeeiitt ettt ettt e et e ettt e et e e sabn e e e e ante e e e nnnes
at_disable_interrupts()............
at_enable_interrupts()
at_get_capture().....ccccoeeeeeeeeninns
at_get_missing_pulse_delay()....
at_get_period()......ccceveeiirieeniinins
at_get _phase_counter().........

CCS C Compiler

Vi

F= U o [A (=TT (V11T o I TSR 169
e o [= A o Jo] [() I PP PPPR 169
e o [T A oJo] 0| =T (o] (O F P PP PPPR 170
= o [T r= LU Y (P EUUP PR 171
L T a0 o A= o1 Y= () I PSRRI 171
At SEt_COMPAIE_TIME() coiieiiiiiiiiie e ettt e e e e e e e e e e s et b e e e e e s e s arb e e e e e e s e aantbaeaeaens 172
at_set_MISSING_PUISE_AEIAY() .rvreriieiiiiiiiiiee et e e 173
F= Y= A (=ETe] L1 o] o T () PSRRI 174
Fo LTS Y= A o To 1 (SRR 174
=LY< (0] o T oo (O TR 175
o] 1 ol (== 1 () IR 176
o1 Y=L (PR UPURRN 177
DIE_EEST() ¢ttt 177
o] 01N To U =T o F=1 o] =T (O ORI 178
L TSY =T 1o o PP 178
(o= 1] [0 Tod () T PP PP PP PPPR 179
(o= [IR T SO P PP PPPRPO 180
clel_setup_gate() clc2_setup_gate() clc3_setup_gate() clcd_setup_gate()ccceevueeeee. 180
(o[- T [(=T (U] o] { () P PP PPPRO 181
clear_pwm1_interrupt() clear_pwm?2_interrupt() clear_pwm3_interrupt()
clear_pwm4_interrupt() clear_pwmb5_interrupt() clear_pwm6_interrupt()cccceeveuvrrnnnnn 182
(oo o JIES] r= LD L () T PSPPI

(oo To I (=151 7= Ly () T RSP
crc_calc()

crc_init(mode)

Lo T =L U1 (O PP PPPRO
cwg_restart()

[0 F= Lo 1 (=T G TP PRTP TP

(o L= F= Y oY (=] (IO PPTP TR 187
(o L= F= Y 1T (O TP PTTP TR 187
(o L= F= YT] () T TP PPTP TP 188
(o lES= o Lo Lo (=T 1] o) T () O P PP PP PPPRO 189
disable_pwm21_interrupt() disable_pwm2_interrupt() disable_pwm3_interrupt(

) disable_pwm4_interrupt() disable_pwm5_interrupt() disable_pwm6_interrupt() 190
(o LV IR (e 1Y PP RPPR TP

enable_interrupts()
enable_pwm1_interrupt() enable_pwm2_interrupt() enable_pwm3_interrupt()

enable_pwm4_interrupt() enable_pwm5_interrupt() enable_pwm6_interrupt()..........c.cc...... 193
(=T L= 1= o] 010 1 () TP PTUP TR 194
(=T IR o] o o] r= T AT =T=T o] o] 4o IO PTTP TR 194
123 (o1 () T PSP PPPRO 195
L g A =To (o =T () I P PP PPRPPPRO 196
L= 10T () T O PO PP PP OUPPPTPPRO 196
L0 To T () TR S PSPPI TP PP OPPPP PRSI 197
L 00 (oo [TP PPRRPR 197
L1 =TT () T PR PPPTPR 198
L1207 o1 () U PRTRR 199
L= T | () IR RTINS 199

Table of Contents

[o < o= o (U] (=T () SRR
[o LS o= oL (N LIV /=T o (SRR
[o L o= oL (N LI [4 [=T) ISR
(o L o= oL (U (I 12) P RUUP P
[o L A TS o1V o= o110 (=T () TR ST
[o Ly A g ToTo JE= Too U [¢ [V 1 F= o () TP STR P
(o Ly A g (oo I g oY= L[0T () ISP USUUPPR
[0 <2 (101 () TR SU TR
Lo =2 A (1401 A () T URTRI
(o 1< A (10011 0 =T PSRRI
(o L= A (1001 T o SRR
(o L A LD () R EUUPP
getc() getch() getchar() fOEIC() «oovrieiiieee it
(o<1 (=] 0LV () T PRSPPI
gets() L0 T<] £ () RSP SPRRTRI
(o To] (o T To [0 [=53] (O P PP PPPR
high_SpPeed_adC_AONE(). . uueiei et
(2ol 411 () T TP TP P PR PPPPP PP
(o S 1 £= 1] () T P PP U PP PPPRO
12 o o Yo | [() TSSO
12 oR (=7 To [RSP
[P oY== To o[(PP
D2 og = o T T=To [() T ORI
(Lo - U () I T PP U PP TP PP RPPPRO
(2o (o] o (O OO PP U PP PPPRO
(Lo 1] T (O T O TP U U PP PPPRO
1] o1 11 PP U PP PPPRO
(1] o101 ol g F= T o [() PP PUTT PR
1] oU S = 1= (O IR PO PP PUTT TR
1] o101 () ISP PTP P OPPPPPUTPN
101 CT g0 o] = ot 11T () TP PP PUTT TR
isalnum(char) isalpha(char) iscntrl(x) isdigit(char) isgraph(x) islower(char)

isspace(char) isupper(char) isxdigit(char) isprint(x) ISPUNCL(X)coocvreerimmeeiniiiieeiiiieenene
(1572 a1 [o] o o [() IO PP U PP PPPPRO
(10T T TP PP U PP PPPPRO
[0 L0 oI (o T] {) PP TS PP PP PR SPPPPT
o] 171 (I PP PP PP PPROPPPPO

[F= 1 o] () I OO URRT TP

(o700 () TR UURT TP

(o] gTo | 10] o1 () TP ERTT TP
LR E 1T () TSP UPRT

[0 E 1N T T ORI

Vi

CCS C Compiler

[0 E 1 IS A () TSRS 238
00T 1o o] () TSRO UPUT 239
memcpy() IMEMIMOVE([) «eeeeeeiiititieee e e e e ettt ee e e e e e e ettt e e e e e e e s ansbaeeeeaeeesaansaeeeeaaeasaansneseeeaaeeaanns 240
INIEIMISEL() trrteeeeeiiiitiie et e et e ettt e e e e e e e e e e e e e e e e ea e et e e e e s e s st b aaeeaeeeeeatbbaeeeaeeesaaabrreeeeeeeaaanrreraaaeas 240
L0700 | { () PP UPROSPPP 241
LA LT 1 T U PO OO PU PP PPR PPN 242
LE U0 £ () TSRS SPR TP 242
offsetof() OFffSELOTDIT(). 243
Lo UL o] 01 () TSR 244
Lo UL o] 01 A o 1 T SUTR R 245
Lo UL o] U1 Ao [1)Y= () SRR 246
Lo UL o] 01 1 (o = (PO PURP P 246
Lo 1011010 Y i aTo o (0 I USSP 247
Lo 1011010) [0,V T PRSPPI 248
(o101 101Uy (o [0 T PRSP 249
LS (o] (O I TP PP TP PPPPP PP 249
PIO_DUSY() 1 teeee ittt h e e 250
[o1To I o =] Y (UL IO PP PP U PP PP PPPRO 250
o]0 I (== o [T PP U PP PPPRO 251
010 I 1 (= () PP 252
o] Fo Tt 2= [RSP 253
o1 DG o 101101 o LS (O ORI 254
10 LY I o111 () I ORI 255
printf() FDIINEE() et 255
10111 T=To U« OO PP U PP PPPRO 257
PSMC_BIANKING() 1.t eeeeeiieee ettt e et e e 258
PSMC_AEAADANA() +.eeeeiiiee ittt 260
|07 0 (o o 011/ () PP O PP PUTT TR 260
[T (ol =To = To |10 { () TSP U UTT PP 261
PSMC_MOAUIBLION() 1tetteeeeiitite ettt e e e e e e sttt e e e e e s abbb b e e e e e e e e annrneeeeeeas 262
[T (o o110 T (PP PP PUTT TR 263
PSMC_SNULAOWIN() 11ttt ettt e st e et e e s e e s anb e e e enr e e e e nnnes 264
S 2 [o 1Y (o] (O TP PSR P TR PPPRO 266
psp_output_full() psp_input_full() psSp_overflow()cccccrmiiiniiiieiieeeeee e 267
putc() PULCNAN() FPULC() eeeeeiiiee ettt 267
putc_send(); 0TV L (oR=T= oo [(5 AU O TR PTPRURP 268
puts() 1] 010 1] () TP PPT RO PRP 269
01110 0 0 { IO T U UURT TP 270
01110 0 o o 1 IO UPTT TP 270
1110 Y= Ao 1111/ PP UUTT PRI 271
PWIM_SEL_AULY PEICENT ...eiiiiiiei ittt e s e et bt e e et b e e s b e e s bt e e e snne e e e nanes 272
PWIM_SEL_ FTEQUENCY ...ttt ettt e ekt e et e e e s b e e e sbb e e e s nte e e e nnnes 272
pwml_interrupt_active() pwm2_interrupt_active() pwm3_interrupt_active()
pwmd4_interrupt_active() pwmb5_interrupt_active() pwm6_interrupt_active()ccccoevvveennee 273
(o T=T I o =] T 1U) () PP PTTP TP 274
(o =TI A olo 10 o { () TSP PTTP RPN 274
Lo =TI = LU (T URTT R R 275
[0 Eo] 1 { () RTINS 275

Table of Contents

7= 1 o [ORI 276
(VA o1V 11 {=T)Y/ (=2 () I RUT PP 277
(o VA o1V 1 1= 1V [TSR 277
=T Lo [To (o () OO UPRTSPPP 278
== Lo [oF= U | () TSR UPR TSP 279
[T Lo o111 o1 1iTo] o1 IR 280
read_configuration_MEMOIY ()coiiiiiiiieee e e e e e e e e e e s e e e e e e s e e aareaeaa s 281
(= Lo I =TT o1 0] o o T () TR 281
(= Lo =V (=T oo [=To I =T o1 () PRSP 282
read_program_memory() read_external_Memory()cccccrrreeiniieeeniiiee e 282
read_Program_EEPIOMI() .o eee ireeeeairetesrireee e st ee e st e e e st e e e s s e e e e s br e e e abae e e s s ne e e e annreeesnneeeennnes 283
(=T Lol o 0 I 11110010 oY/ () TR PTRSTPPP 284
=T Vo Yo [= To o] (0 I RSP 284
=T 1o o] (ST 285
=1 (o Y To RO 286
[T o o[V T () I TP E PP PP RPPPRO 286
(e e o= 10 LT) T PP PP PPPRO 287
LSS r= L o L () T T P PSR P P TP PP PPPRO 287
11 (=R (=Y () I TP PP U PP PPPRO 288
o121 (I 1o] 1 (() T ORI 289
(o= =T T (T o[() T ORI 290
(o1 =T 1 (= () I ORI 290
(o 1= Vo [T RO 2901
(o] (=T () IO PSP PR PPPRON 291
(o T U= U1 { () P PP U PP PPPRO 292
TEOS_AISADIE() weeeiiiiie ettt 293
FEOS_ENADIE() 1eeee ittt 293
FEOS_IMST_POII() ettt e ettt e e e e st bbbt e e e e e s e bbb e e e e e e e e e e e e s 294
TEOS_OVEITUN() etttteeee e e e ettt e e e ekttt et e e e e ettt et e e oo e s ab b ettt e e e e e e ab b b et e e e e e e e ansbb bbb e e e e e e s annnbbeeeeaens 294
100 TSI 10 o T TP T T OO PUTT PP 295
100 TSI T | o = L[TP PP PUTT PP 295
(0 T t= L] () [P PSPPSR PP PPPR 296
FEOS_TEIMINALE() . ttiee ittt e e e ekt e e et e e s b e e e et e e e enne e e e nanes 297
TEOS_WAITE() +. vttt ittt e ettt ettt ettt e et e ettt e st e e s b e e e ekt e e e ab e e e ek et e e e st e e e e nne e e nnee 297
L1Co T T=1 [0 [) TP U PP PPPRO 298
SEL_AUC_CRANNEI() . .eiieiieee e 299
ST A= U (o (g To o =T) I TP PUTP TP 299
ST =T a =1 o Lo T o1 0 1] () TP PTTP TSP 300
(o= T | { () TP TP PTTP TSP 301
ST oo o [l o] F= Va1 (T [|) TP PUTP TSP 304
= et To [l (== To [o - Ta (o [() P O P PP PP PPPRO 305
A otoTo [l o] 4 F= Y= () I PP PP PP PP PPPRO 305
SEL_COMPATE_TIME() 1ieieteieiiiiee ettt ettt e e st e ettt e e asbe e e e snbb e e e e aneeeeenanee 306
set_dedicated_adc_ChanNEI()ooi i 307
S INPUL_IEVEIX() -ettteeeee ettt ettt e e e et e e e e e e e b e e e e e e e e b e e e e e s 308
ST o (oo I T (o V7= [N =T (TP UTTT TR 308
ST o oMV =T g oY T o)V =T 4 o (=T () U ERTR R S 310
Set_POWET_PWIMX_AULY() 1oeiiiiiieee ettt e e e e ettt e e e e e e et e e e e e e e e s nnb e e e e e e e e e annnnneeaans 310

CCS C Compiler

set_pwm1_duty() set_pwm2_duty() set_pwm3_duty() set pwm4_duty()

ST A 111V 0 E T o [V 1Y/ () ISR 311
set_pwml_offset() set_pwm?2_offset() set_pwm3_offset() set_pwm4_offset(

) set_pwmb5_offset() set_pwWmB_OffFSEI() c.uvvriieiiiiiiieiie e 312
set_pwml_period() set_pwm2_period() set_pwm3_period()

set_pwm4_period() set_pwm5_period() set_pwm6_period()cccoccveeeeiiiiiiiiiieee e, 313
set_pwml_phase() set pwm2_phase() set_pwm3_phase()

set_pwm4_phase() set_pwm5_phase() set_pwm6_phase()ccccooceeeeiiiiiiiieieeeeeeiiieeeeenn 314
ST o] o L= g e = UL T () I SRR 315
set_rtce() set_timerO() set_timerl() set timer2() set_timer3()

S R L= N Y= A (100 1T 65T () I SRR 315
= (o T (O TR PUTP TP 316
setup_sd_adc_CaliBration(()o.eooueie e 317
Y= =T - To (ol o] o =T =Y [USRI 318
Y= A 114 =T A PRI 318
S A (110 1=T 1 =T P TP PP P TR PPPRPON 319
A (ST () T P PP PP PPPRPON 320
S A= L A o 1T=To [I PP PP PPPRPO 320
11 00] o] (O ISP P PP PP PPPPP PRSP 321
Y= 00] o T Vo (o (140 T () PSPPI 322
=110 oI Vo (o3 o] 4 = () I RSP 323
Y=L 0 oI Vo (o (=) (=T =7 oo T RSP 324
L= L0] o T () PRSP 325
setup_ccpl() setup_ccp2() setup_ccp3() setup_ccpd() setup_ccp5()
setup_ccp6() 326

setup_clcl() setup_clc2() setup_clc3() Setup_CICA()....coverrmriieiiiie e 328
U0 o oto] 1o T T =1 (o] { () PP E PP PT PP PPPRO 329
1L oI ole] U] 01 (=T £ () TP PPTP TR 329
ST LU o T oo o | () TP PTTP TP 330
1 LE | o I ol o () PO PPTP TP 332
ST LU T o1 () T TP PTTP TR 332
=110 o T o - Lol () IR O PP PPPRO 333
SELUP_EXIEINAI_MEMOIY() «oitreeeiiiit ettt ettt e st e e e b e e e s anbe e e e 334
=110 oI (oo [T P PP PP PPPRPO 334
SELUP_IOW_VOIT_AEIECT() +eeeiireieeiiiie ettt e e e 336
=110 oI ot | (O I PSP P PP PPPRO 336
setup_opampl() setup_opamp2() setup_0PampP3()cccuurrereeeeririrrrieeeeeeaaiiieee e e e s enrieeeeaens 337
ST (U] o oo [() IO PUTP TSP 338
setup_pmp(option,addreSS_MASK)ueeiiiiieiiiiiii e 339
ST o oIS 14 (o (O TP PTTP TP 340
SELUP_POWET_PWITIH() 1 euetteeeiittee e ettt e sttt e ettt ettt e e sttt e e et e e s sttt e e s bt e e e bt e e e nbe e e e snbb e e e sntreeennnes 342
SELUP_POWET_PWIMT_PINS() 1 tttteeiuititeeiteee ettt e ettt e e sttt e ettt e s st e e sbe et e s asbr e e e snbe e e e snbbeeeaanneeeennnee 343
setup_psp(option,addreSS_MASK)eeeiiiiii i 344
setup_pwm1() setup_pwm2() setup_pwm3() Setup_pPWMA() ...cccorererniireniiieeeniieeene 345
ST (U] o o [T () IO PTTP TP 345
ST (U] o 1 (o () I TP PTTP TP 346
ST (U o I g (o= F= T 0 () I RRTT R 347
ST (U o = 001 o () TS RU PR 347

Table of Contents

setup_spi() setup_spi2()

LU o (100 LT 2 () TR
ST (U o (100 LT =T () T ERTR I
= 00 o {00 LT G O IS PUUP TP
=00 o {00 LT G () IS PURP P
= 00 o (00 T A (O IS UUUP R
L0 o (00 LT G T () I PUUP P
(U] o (00 LT () TP SRR
L (U o (100 LT T () I SUTP SR
L1 (U] o T U= U () T SRR
L (U oI = {0 TR
L= 00 oo L{ (TP PUTP P
Y= 10] o T [() PRI
SNITE_IETE() ottt
L] 11 1S o | 0] () I PRSPPI
L] [ST= o] () I TP PP PPPRPO
1 (== Lo [TP PP PPPRPO
SIMEX_FESEE TIMIEI() wrrtiiiieee ettt ettt e e st e e ettt e st e e e sab e e e s nte e e e nnnes
] 1 v= L1 () TR P PP PP PPPRPO
L]] = L0 () PSPPI
L])] 1o o1 () PRSPPI
L] 1 (= () PP
L] 1 U] Lo I L= (O I USRI
spi_data_is_in() spi_data_is_in2()

SPI_INI). e

S oTI LCa1 CST (o F= 1) PP PP PPPRO
spi_read() spi_read2()
spi_read2_16() spi_read3 _16() SPi_readsd_16()....cccceeumrmrrmeeieeeiaiiiiiiitea e 366
] o] o 1T =T (PP PTTP TP 367
spi_write() SPI_WITEEZ2() tteteeee ettt e e e e e e as 367
] oI (=] £ () PO PTTP TP 368

STANDARD STRING FUNCTIONS() memchr() memcmp() strcat()
strchr() stremp() strcoll() strespn() strerror() stricmp() strlen() striwr()

strncat() strncmp() strncpy() strpbrk() strrchr() strspn() strstr() strxfrm()................ 372
strepy() S 1(ol0] o) Y/ () TP TP 373
L] 1o [() TP PTTP TP 374
11 (0] () TP TP PP PPPRO 375
L] 17 (0] [() TP PP P PP PPPRON 376
LS 1 (o 10| O O PP PR UP PP OTPPPPPPRPON 376
V= o] () PP PPPRO 377
tolower() (18 o] o 1T £ () PP UPPT PP 378
(o]0 {ed o] o F=To I o = (o] (0 TP TP PPPRPR 379
{118 {ed o] o = To I o 1 { () ISR 379
{110 {od o] o= To I v= 1 (= () ISP ERRR 380

Xi

CCS C Compiler

IX_DUffer_available() e 381
Lo o 1011 (=T g o)V (=T IR 382
Lo o 1011 =T o 011 TR PRRR 383
(2 B Lo | () PSSO PRRRRRNt 383
(2 B o [P PSP PRPRRRNt 384
(V2= T 2= PRSPPIt 385
L I o F= Lo L I PRSP PPPRP 386
write_CoNfIQUIratioN_MEMIOIY() ...uueeieiie ettt e e et e e e e e e et e e e e e e e enneeeas 386
LR =T=T ol (o] 1o T O TR PP PP PPPRP ORI 387
WHEtE_EXEEINAI_MEMOIY().reiiiitiieeiiiit ettt e e s e e e e s e e 388
gL G =T g Lo (=T I = T o TP URRR 389
gL G o (oo | =T a tI=L=] oL o] 121 (0 F U PPPPRP 389
LI oTCeTo] = Lo a1 1= 1 aTo] oY/ (0 SRR TSRRI 390
4o (o - 110] () PSPPI 391
Standard C INCIUAE FlES........c..uiiiiiiiii ettt 393
=T g Lo T o D PP P PR PPPRO 393
FIOBLN e e 393
T 11 ES o O TP PP U PP PPPPRO 394
[oTor=1 [N o B O PP E PP PPPRO 395
L7101 o 18 o PRSPPI 395
SEAABT.N e 395
SUAIOL . 395
SN N e 396
SOftWAre LICENSE AQIEEMENT......eiiiiiiiie ittt ettt e ettt e e e e st e e e sb e e s b e e e s sanneeeaas 397

Xii

OVERVIEW

PCB, PCM and PCH Overview

The PCB, PCM, and PCH are separate compilers. PCB is for 12-bit opcodes, PCM is for
14-bit opcodes, and PCH is for 16-bit opcode PIC® microcontrollers. Due to many
similarities, all three compilers are covered in this reference manual. Features and
limitations that apply to only specific microcontrollers are indicated within. These compilers
are specifically designed to meet the unique needs of the PIC® microcontroller. This
allows developers to quickly design applications software in a more readable, high-level
language.

IDE Compilers (PCW, PCWH and PCWHD) have the exclusive C Aware integrated
development environment for compiling, analyzing and debugging in real-time. Other
features and integrated tools can be viewed in the help file.

When compared to a more traditional C compiler, PCB, PCM, and PCH have some
limitations. As an example of the limitations, function recursion is not allowed. This is due
to the fact that the PIC® has no stack to push variables onto, and also because of the way
the compilers optimize the code. The compilers can efficiently implement normal C
constructs, input/output operations, and bit twiddling operations. All normal C data types
are supported along with pointers to constant arrays, fixed point decimal, and arrays of
bits.

Installation

1. Insertthe CD ROM, select each of the programs you wish to install and follow the on-
screen instructions.

2. Ifthe CD does not auto start run the setup program in the root directory.
3. For help answering the version questions see the "Directories" Help topic.
4. Key Questions that may come up:
e Keep Settings- Unless you are having trouble select this
e Link Compiler Extensions- If you select this the file extensions like .c will start

the compiler IDE when you double click on files with that extension. .hex files
start

CCS C Compiler

the CCSLOAD program. This selection can be change in the IDE.

e Install MP LAB Plug In- If you plan to use MPLAB and you don't select this you
will need to download and manually install the Plug-In.

e Install ICD2, ICD3...drivers-select if you use these microchip ICD units.

e Delete Demo Files- Always a good idea

e Install WIN8 APP- Allows you to start the IDE from the WIN8 Start Menu.

Technical Support

Compiler, software, and driver updates are available to download at:
http://www.ccsinfo.com/download

Compilers come with 30 or 60 days of download rights with the initial purchase. One year
maintenance plans may be purchased for access to updates as released.

The intent of new releases is to provide up-to-date support with greater ease of use and
minimal, if any, transition difficulty.

To ensure any problem that may occur is corrected quickly and diligently, it is
recommended to send an email to: support@ccsinfo.com or use the Technical Support
Wizard in PCW. Include the version of the compiler, an outline of the problem and attach
any files with the email request. CCS strives to answer technical support timely and
thoroughly.

Technical Support is available by phone during business hours for urgent needs or if email
responses are not adequate. Please call 262-522-6500 x32.

Directories

The compiler will search the following directories for Include files.
. Directories listed on the command line
. Directories specified in the .CCSPJT file
. The same directory as the source.directories in the ccsc.ini file

By default, the compiler files are put in C:\Program Files\PICC and the
example programs are in \PICC\EXAMPLES. The include files are in
PICC\drivers. The device header files are in PICC\devices.

The compiler itself is a DLL file. The DLL files are in a DLL directory by default in
\PICC\DLL.

http://www.ccsinfo.com/downloads.php

Overview

It is sometimes helpful to maintain multiple compiler versions. For example, a project was
tested with a specific version, but newer projects use a newer version. When installing the
compiler you are prompted for what version to keep on the PC. IDE users can change
versions using Help>about and clicking "other versions." Command Line users use
start>all programs>PIC-C>compiler version.

Two directories are used outside the PICC tree. Both can be reached with start>all
programs>PIC-C.

1.) A project directory as a default location for your projects. By default put in
"My
Documents." This is a good place for VISTA and up.

2.) User configuration settings and PCWH loaded files are kept in
%APPDATA%\PICC

File Formats

.c This is the source file containing user C source code.
.h These are standard or custom header files used to define pins, register,
register bits, functions and preprocessor directives.
pjt This is the older pre- Version 5 project file which contains information related to
' the project.
.ccspjt This is the project file which contains information related to the project.
This is the listing file which shows each C source line and the associated
assembly code generated for that line.
The elements in the .LST file may be selected in PCW under
Options>Project>Output Files
st CCS Basic Standard assembly instructions
with Opcodes Includes the HEX opcode for each instruction
Old Standard
Symbolic Shows variable names instead of addresses
.sym This is the symbol map which shows each register location and what program
variables are stored in each location.
The statistics file shows the RAM, ROM, and STACK usage. It provides
.sta information on the source codes structural and textual complexities using

Halstead and McCabe metrics.

CCS C Compiler

.tre

.hex

.cof

.cod
rtf

rvf

.dgr

.esym
Xsym

.osym
.err
.ccsloa
d

.ccssio
w

The tree file shows the call tree. It details each function and what functions it
calls along with the ROM and RAM usage for each function.

The compiler generates standard HEX files that are compatible with all
programmers.

The compiler can output 8-bet hex, 16-bit hex, and binary files.
This is a binary containing machine code and debugging information.

The debug files may be output as Microchip .COD file for MPLAB 1-5,
Advanced Transdata .MAP file, expanded .COD file for CCS debugging or
MPLAB 6 and up .xx .COF file. All file formats and extensions may be selected
via Options File Associations option in Windows IDE.

This is a binary file containing debug information.

The output of the Documentation Generator is exported in a Rich Text File
format which can be viewed using the RTF editor or Wordpad.

The Rich View Format is used by the RTF Editor within the IDE to view the Rich
Text File.
The .DGR file is the output of the flowchart maker.

These files are generated for the IDE users. The file contains Identifiers and
Comment information. This data can be used for automatic documentation
generation and for the IDE helpers.

Relocatable object file

This file is generated when the compiler is set to export a relocatable object file.
This file is a .sym file for just the one unit.
Compiler error file

used to link Windows 8 apps to CCSLoad
used to link Windows 8 apps to Serial Port Monitor

Invoking the Command Line Compiler

The command line compiler is invoked with the following command:
CCscC [options] [cfilename]

Valid options:
+FB Select PCB (12 bit) -D Do not create debug file
+FM Select PCM (14 bit) +DS Standard .COD format debug file

4

Overview

+FH Select PCH (PIC18XXX) +DM .MAP format debug file
+YX Optimization level x (0-9) +DC Expanded .COD format debug file
Enables the output of an COFF debug
*DFfije.
+FS Select SXC (SX) +EO Old error file format
+ES Standard error file -T Do not generate a tree file
+T Create call tree (.TRE) -A Do not create stats file (.STA)
+A Create stats file (.STA) -EW Suppress warnings (use with +EA)
+EW Show warning messages -E Only show first error
Show all error messages Error/warning message forma}t uses
+EA +EX GCC's "brief format" (compatible with

and all warnings

GCC editor environments)

The xxx in the following are optional. If included it sets the file extension:

+L NXXX Normal list file +08xxx 8-bit Intel HEX output file

+L Sxxx MPASM format list +OWxxx 16-bit Intel HEX output file
file

+LOXXX Old MPASM list file +OBxxx Binary output file

+LYXXX Symbolic list file -O Do not create object file

-L Do not create list file

+P Keep compile status window up after compile

+Pxx Keep status window up for xx seconds after compile

+PN Keep status window up only if there are no errors

+PE Keep status window up only if there are errors

+Z Keep scratch files on disk after compile

+DF COFF Debug file

I+="..." Same as |="..." Except the path list is appended to the current list
Set include directory search path, for example:
I="c:\picc\examples;c:\picc\myincludes"

=" If no I= appears on the command line the .PJT file will be used to supply
the include file paths.

-P Close compile window after compile is complete

+M Generate a symbol file (.SYM)

-M Do not create symbol file

+J Create a project file (.PJT)

=J Do not create PJT file

+ICD Compile for use with an ICD

#XXX="yyy" Set a global #define for id xxx with a value of yyy, example:
#debug="true"

+Gxxx="yyy" Same as #xxx="yyy"

+? Brings up a help file

-? Same as +7?

CCS C Compiler

+STDOUT Outputs errors to STDOUT (for use with third party editors)
+SETUP Install CCSC into MPLAB (no compile is done)
Allows a source line to be injected at the start of the source file.

sourceline= Example: CCSC +FM myfile.c sourceline="#include <16F887.h>"
+V Show compiler version (no compile is done)
+Q Show all valid devices in database (no compile is done)

A / character may be used in place of a + character. The default options are as follows:
+FM +ES +J +DC +Y9 -T -A +M +LNIst +O8hex -P -Z

If @filename appears on the CCSC command line, command line options will be read
from the specified file. Parameters may appear on multiple lines in the file.

If the file CCSC.INI exists in the same directory as CCSC.EXE, then command line
parameters are read from that file before they are processed on the command line.

Examples:
CCSC +FM C:\PICSTUFF\TEST.C
CCsC +FM +P +T TEST.C

PCW Overview

The PCW IDE provides the user an easy to use editor and environment for developing
microcontroller applications. The IDE comprises of many components, which are
summarized below. For more information and details, use the Help>PCW in the compiler..

Many of these windows can be re-arranged and docked into different positions.

Menu

All of the IDE's functions are on the main menu. The main menu is divided into separate
sections, click on a section title ('Edit’, 'Search’, etc) to change the section. Double
clicking on the section, or clicking on the chevron on the right, will cause the menu to
minimize and take less space.

Overview

Editor Tabs

All of the open files are listed here. The active file, which is the file currently being edited,
is given a different highlight than the other files. Clicking on the X on the right closes the
active file. Right clicking on a tab gives a menu of useful actions for that file.

Slide Out Windows

'Files' shows all the active files in the current project. 'Projects' shows all the recent
projects worked on. 'ldentifiers' shows all the variables, definitions, prototypes and
identifiers in your current project.

Editor

The editor is the main work area of the IDE and the place where the user enters and
edits source code. Right clicking in this area gives a menu of useful actions for the code
being edited.

Debugging Windows

Debugger control is done in the debugging windows. These windows allow you set
breakpoints, single step, watch variables and more.

CCS C Compiler

Status Bar

The status bar gives the user helpful information like the cursor position, project open
and file being edited.

Output Messages

Output messages are displayed here. This includes messages from the compiler during
a build, messages from the programmer tool during programming or the results from
find and searching.

PROGRAM SYNTAX

Overall Structure

A program is made up of the following four elements in a file:
Comment
Pre-Processor Directive
Data Definition
Function Definition
Statements
Expressions

Every C program must contain a main function which is the starting point of the program
execution. The program can be split into multiple functions according to the their purpose
and the functions could be called from main or the sub-functions. In a large project
functions can also be placed in different C files or header files that can be included in the
main C file to group the related functions by their category. CCS C also requires to include
the appropriate device file using #include directive to include the device specific
functionality. There are also some preprocessor directives like #fuses to specify the fuses
for the chip and #use delay to specify the clock speed. The functions contain the data
declarations,definitions,statements and expressions. The compiler also provides a large
number of standard C libraries as well as other device drivers that can be included and
used in the programs. CCS also provides a large number of built-in functions to access
the various peripherals included in the PIC microcontroller.

Comment

Comments — Standard Comments
A comment may appear anywhere within a file except within a quoted string. Characters
between /* and */ are ignored. Characters after a // up to the end of the line are ignored.

Comments for Documentation Generator

The compiler recognizes comments in the source code based on certain markups. The
compiler recognizes these special types of comments that can be later exported for use in
the documentation generator. The documentation generator utility uses a user selectable
template to export these comments and create a formatted output document in Rich Text
File Format. This utility is only available in the IDE version of the compiler. The source
code markups are as follows.

CCS C Compiler

Global Comments

These are named comments that appear at the top of your source code. The comment
names are case sensitive and they must match the case used in the documentation
template.

For example:

/I*PURPQOSE This program implements a Bootloader.

/*AUTHOR John Doe

A''ll' followed by an * will tell the compiler that the keyword which follows it will be the
named comment. The actual comment that follows it will be exported as a paragraph to
the documentation generator.
Multiple line comments can be specified by adding a : after the *, so the compiler will not
concatenate the comments that follow. For example:
/**:CHANGES

05/16/06 Added PWM loop

05/27.06 Fixed Flashing problem
*

Variable Comments

A variable comment is a comment that appears immediately after a variable declaration.
For example:

int seconds; // Number of seconds since last entry

long day, // Current day of the month, /* Current Month */

long year; // Year

Function Comments

A function comment is a comment that appears just before a function declaration. For
example:

/I The following function initializes outputs

void function_foo()

{
}

init_outputs();

10

Program Syntax

Function Named Comments

The named comments can be used for functions in a similar manner to the Global
Comments. These comments appear before the function, and the names are exported as-
is to the documentation generator.

For example:

/I*PURPQOSE This function displays data in BCD format

void display_BCD(byte n)

display_routine();

Trigraph Sequences

The compiler accepts three character sequences instead of some special characters not
available on all keyboards as follows:

Sequence Same as

??=
?27?(
??/
2?)
?7?'

?7<
vard

27>
?7?-

| ~— e >— —— It

Multiple Project Files

When there are multiple files in a project they can all be included using the #include in the
main file or the sub-files to use the automatic linker included in the compiler. All the
header files, standard libraries and driver files can be included using this method to
automatically link them.

For example: if you have main.c, x.c, x.h, y.c,y.h and z.c and z.h files in your project, you
can say in:

main.c #include <device header file>
#include<x.c>
#include<y.c>
#include <z.c>

11

CCS C Compiler

X.C #include <x.h>

y-€ #include <y.h>

z.C #include <z.h>

In this example there are 8 files and one compilation unit. Main.c is the only file compiled.

Note that the #module directive can be used in any include file to limit the visibility of the
symbol in that file.

To separately compile your files see the section "multiple compilation units".

Multiple Compilation Units

Multiple Compilation Units are only supported in the IDE compilers, PCW, PCWH,
PCHWD and PCDIDE. When using multiple compilation units, care must be given that
pre-processor commands that control the compilation are compatible across all units. It is
recommended that directives such as #FUSES, #USE and the device header file all put in
an include file included by all units. When a unit is compiled it will output a relocatable
object file (*.0) and symbol file (*.osym).

There are several ways to accomplish this with the CCS C Compiler. All of these methods

and example projects are included in the MCU.zip in the examples directory of the
compiler.

Full Example Program

Here is a sample program with explanation using CCS C to read adc samples over rs232:

L1177 707777777777707771777777
L1177 07 777770777777 77777077

/1777 EX_ADMM.C ////
/177 /1177
//// This program displays the min and max of 30 A/D samples over ////
//// the RS-232 interface. The process is repeated forever. ////
/177 /777

12

Program Syntax

//// 1f required configure the CCS prototype card as follows: /777
/177 Insert jumper from output of POT to pin A5 /777
//// Use a 10K POT to vary the voltage. /117
/1177 /117
//// Jumpers: ////
/177 PCM, PCH pin C7 to RS232 RX, pin C6 to RS232 TX 117/
/1177 PCD none /117
/1177 /177
//// This example will work with the PCM, PCH, and PCD compilers. ////
//// The following conditional compilation lines are used to /777
//// include a valid device for each compiler. Change the device, ////
//// clock and RS232 pins for your hardware if needed. /777
JI1777777077 7777077777777 77
/177 (C) Copyright 1996,2007 Custom Computer Services /7177

//// This source code may only be used by licensed users of the CCS ////
//// C compiler. This source code may only be distributed to other ////

//// licensed users of the CCS C compiler. No other use, /777
//// reproduction or distribution is permitted without written /177
//// permission. Derivative programs created using this software /177
//// in object code form are not restricted in any way. ////
[777777777777 77
#if defined(PCM) // Preprocessor directive

that chooses

// the compiler
#include <16F877.h> // Preprocessor directive
that selects

// the chip
#fuses HS,NOWDT, NOPROTECT, NOLVP // Preprocessor directive
that defines

// the chip fuses
#use delay(clock=20000000) // Preprocessor directive
that //
specifies clock speed

#use rs232(baud=9600, xmit=PIN C6, rcv=PIN C7) // Preprocessor directive
that includes
// RS232 libraries

#elif defined(PCH)

#include <18F452.h>

#fuses HS,NOWDT, NOPROTECT, NOLVP

#use delay(clock=20000000)

#use rs232(baud=9600, xmit=PIN C6, rcv=PIN C7)
#fuses HS,NOWDT

#device ADC=8

#use delay(clock=20000000)

#use rs232(baud=9600, UARTI1A)

#endif
void main() {

unsigned int8 i, value, min, max;

printf ("Sampling:"); // Printf function included
in RS232

// library
setup adc ports (ANO) ;

13

CCS C Compiler

#endif
setup adc (ADC_CLOCK_ INTERNAL) ; // Built-in A/D setup
function
set_adc_channel (0) ; // Built-in A/D setup
function
do {
min=255;
max=0;
for (i=0; i<=30; ++i) {
delay ms (100); // Built-in delay function
value = read adc(); // Built-in A/D read function

if (value<min)
min=value;
if (value>max)
max=value;

}

printf ("\r\nMin: %2X Max: %$2X\n\r",min,max) ;
} while (TRUE) ;

14

STATEMENTS

for
(exprl;expr2;expr3)
stmt;

switch (expr) {
case cexpr: stmt;
/lone or more case
[default:stmt]

o}

return [expr];
goto label;
label: stmt;
break;
continue;
expr;

{[stmt]}

Zero or more
declaration;

Statements

STATEMENT Example
if (expr) stmt; [else if (x==25)
stmt;] x=0;

else

x=x+1;
. . while (get rtcc() !=0)

while (expr) stmt; putc ('n’) ;
do stmt while (expr); do {

putc (c=getc()) ;
} while (c!=0);

for (i=1;1i<=10;++1)
printf (“$u\r\n”,1i);

switch (cmd) {
case 0: printf (“cmd
0”) ;break;
case 1l: printf (“cmd
1”) ;break;
default: printf (“bad
cmd”) ;break;
}
return (5);
goto loop;
loop: i++;
break;
continue;
i=1;

Note: Itemsin [] are optional

15

CCS C Compiler
if

if-else
The if-else statement is used to make decisions.
The syntax is:

if (expr)
stmt-1,

[else
stmt-2;]

The expression is evaluated; if it is true stmt-1 is done. If it is false then stmt-2 is done.

else-if
This is used to make multi-way decisions.
The syntax is:

if (expr)
stmt;
[else if (expr)
stmt;]
[else
stmt;]
The expressions are evaluated in order; if any expression is true, the statement

associated with it is executed and it terminates the chain. If none of the conditions are
satisfied the last else part is executed.

Example:

if (x==25)
x=1;

else
x=x+1;

Also See: Statements

while

While is used as a loop/iteration statement.
The syntax is:

while (expr)
statement

16

Statements

The expression is evaluated and the statement is executed until it becomes false in which
case the execution continues after the statement.

Example:
while (get rtcc() !=0)
putc('n');

Also See: Statements

do-while

do-while: Differs from while and for loop in that the termination condition is checked at
the bottom of the loop rather than at the top and so the body of the loop is always
executed at least once. The syntax is:

do
statement
while (expr);

The statement is executed; the expr is evaluated. If true, the same is repeated and when
it becomes false the loop terminates.

Also See: Statements , While

for

For is also used as a loop/iteration statement.
The syntax is:

for (exprl;expr2;expr3)
statement

The expressions are loop control statements. exprl is the initialization, expr2 is the
termination check and expr3 is re-initialization. Any of them can be omitted.

Example:
for (i=1;i<=10;++1)
printf ("Su\r\n",1i);

Also See: Statements

17

CCS C Compiler

switch

Switch is also a special multi-way decision maker.
The syntax is

switch (expr) {
case constl: stmt sequence;
break;

taefault:stmt]

This tests whether the expression matches one of the constant values and branches
accordingly.

If none of the cases are satisfied the default case is executed. The break causes an
immediate exit, otherwise control falls through to the next case.

Example:
switch (cmd) {
case O:printf("cmd 0");

break;
case l:printf("cmd 1");
break;
default:printf ("bad cmd") ;
break; }

Also See: Statements

return

return

A return statement allows an immediate exit from a switch or a loop or function and also
returns a value.

The syntax is:

return(expr);

Example:
return (5);

Also See: Statements

18

Statements

goto

goto
The goto statement cause an unconditional branch to the label.

The syntax is:
goto label;

A label has the same form as a variable name, and is followed by a colon.
The goto's are used sparingly, if at all.

Example:
goto loop;

Also See: Statements

label

label

The label a goto jumps to.
The syntax is:

label: stmnt;

Example:
loop: i+t+;

Also See: Statements

break

break.

The break statement is used to exit out of a control loop. It provides an early
exit from while, for ,do and switch.

The syntax is

break;

It causes the innermost enclosing loop (or switch) to be exited immediately.

19

CCS C Compiler

Example:
break;

Also See: Statements

continue

The continue statement causes the next iteration of the enclosing loop(While, For, Do) to
begin.

The syntax is:

continue;

It causes the test part to be executed immediately in case of do and while and the control
passes the

re-initialization step in case of for.

Example:
continue;

Also See: Statements

expr

The syntax is:
expr;

Example:
i=1;

Also See: Statements

Statement: ;

20

Example:

14

Also See: Statements

stmt

Zero or more semi-colon separated.

The syntax is:
{[stmt]}
Example:
{a=1;
b=1;}

Also See: Statements

Statements

21

EXPRESSIONS

Constants
123 Decimal
123L Forces type to & long (UL also allowed)
123LL Forces type to & int32;
0123 Octal
0x123 Hex
0b010010 Binary
123.456 Floating Point
123F Floating Point (FL also allowed)
123.4E-5 Floating Point in scientific notation
X' Character
"\010' Octal Character
"\xA5’ Hex Character
Special Character. Where c is one of:
\n Line Feed - Same as \x0a
\r Return Feed - Same as \x0d
\t TAB - Same as \x09
\b Backspace - Same as \x08
e’ \f Form Feed - Same as x0c

\a Bell - Same as \x07

\v Vertical Space - Same as \x0Ob

\? Question Mark - Same as \x3f

\' Single Quote - Same as \x22

\" Double Quote - Same as \x22

\\ A Single Backslash - Same as \x5c

23

CCS C Compiler

"abcdef" String (null is added to the end)
Identifiers
ABCDE Up to 32 characters beginning with a non-numeric. Valid

characters are A-Z, 0-9 and _ (underscore). By default
not case sensitive Use #CASE to turn on.

ID[X] Single Subscript

ID[X][X] Multiple Subscripts

ID.ID Structure or union reference

ID->ID Structure or union reference

Operators

+ Addition Operator

+= Addition assignment operator, x+=y, is the same as
X=Xty

[] Array subscrip operator

&= Bitwise and assignment operator, x&=y, is the
same as X=x&y

& Address operator

& Bitwise and operator

A Bitwise exclusive or assignment operator, X"=y, is

- the same as x=x"y
A Bitwise exclusive or operator

Bitwise inclusive or assignment operator, xl=y, is
the same as x=xly

| Bitwise inclusive or operator

?: Conditional Expression operator

== Decrement

/= Division assignment operator, x/=y, is the same as
X=X/y

/ Division operator

== Equality

> Greater than operator

>= Greater than or equal to operator

++ Increment

* Indirection operator

Expressions

<<=

<<
<=
&&

%=

Inequality

Left shift assignment operator, x<<=y, is the same

as X=x<<y

Less than operator
Left Shift operator

Less than or equal to operator

Logical AND operator
Logical negation operator
Logical OR operator
Member operator for structures and unions
Modules assignment operator x%-=y, is the same as

X=x%y

Modules operator

Multiplication assignment operator, x*=y, is the

same as x=x*y

Multiplication operator
One's complement operator
Right shift assignment, x>>=y, is the same as

X=X>>y

Right shift operator
Structure Pointer operation
Subtraction assignment operator, x-=y, is the same

as x=x-y

Subtraction operator
Determines size in bytes of operand

Operator Precedence

PIN DESCENDING PRECEDENCE

Associativity

(expr) exor++ expr->expr expr.expr Left to Right
++expr expr++ - -expr expr - - Left to Right
lexpr ~expr +expr -expr Right to Left
(type)expr *expr &value sizeof(type) Right to Left
expr*expr exprlexpr exprooexpr Left to Right
expr+expr expr-expr Left to Right
expr<<expr expr>>expr Left to Right
expr<expr expr<=expr expr>expr expr>=expr Left to Right
expr==expr expri=expr Left to Right
expr&expr Left to Right
expriexpr Left to Right

25

CCS C Compiler

expr | expr Left to Right
expr&& expr Left to Right
expr || expr Left to Right
expr ? expr: expr Right to Left
Ivalue = expr Ivalue+=expr Ivalue-=expr Right to Left
Ivalue*=expr Ivalue/=expr Ivalue%=expr Right to Left
Ivalue>>=expr Ivalue<<=expr Ivalue&=expr Right to Left
IvalueA=expr Ivalue|=expr Right to Left
expr, expr Left to Right

26

(Operators on the same line are equal in precedence)

DATA DEFINITIONS

Data Definitions

This section describes what the basic data types and specifiers are and how variables can
be declared using those types. In C all the variables should be declared before they are
used. They can be defined inside a function (local) or outside all functions (global). This
will affect the visibility and life of the variables.

A declaration consists of a type qualifier and a type specifier, and is followed
by a list of one or more variables of that type.
For example:
int a,b,c,d;
mybit e, f£;
mybyte g[3]1[2];
char *h;
colors 7j;
struct data record dataf[l0];
static int i;
extern long j;

Variables can also be declared along with the definitions of the special
types.
For example:
enum colors{red, green=2,blue}i,j,k; // colors is the
enum type and i,7j,k
//are variables of that type

SEE ALSO:

Type Specifiers/ Basic Types
Type Qualifiers

Enumerated Types
Structures & Unions

typedef

Named Registers

27

CCS C Compiler

Type Specifiers

Basic Types

Type- Range

Specifier Size Unsigned Signed Digits
intl 1 bit number Oto1l N/A 1/2
int8 8 bit number 0 to 255 -128 to 127 2-3
int16 16 bit number 0 to 65535 -32768 t0 32767 4-5
int32 32 bit number 0t0 4294967295 -2147483648 to 2147483647 9-10
float32 32 bit float 15x10% to 3.4 x 10% 7.8

C Standard Type

Default Type

short
char

int

long
long long
float
double

intl

unsigned int8

int8
int1l6
int32
float32
N/A

Note: All types, except float char , by default are un-signed; however, may be preceded by

unsigned or signed (Except int64 may only be signed) . Short and long may have the

keyword INT following them with no effect. Also see #TYPE to change the default size.

SHORT INT1 is a special type used to generate very efficient code for bit operations and

1/0. Arrays of bits (INT1 or SHORT) in RAM are now supported. Pointers to bits are

not permitted. The device header files contain defines for BYTE as an int8 and

BOOLEAN as an intl.

Integers are stored in little endian format. The LSB is in the lowest address. Float
formats are described in common questions.

SEE ALSO: Declarations, Type Qualifiers, Enumerated Types, Structures & Unions,

typedef, Named Registers

28

Data Definitions

Type Qualifiers

Type-Qualifier

static Variable is globally active and initialized to 0. Only accessible from this
compilation unit.

Variable exists only while the procedure is active. This is the default and

auto AUTO need not be used.

do Is a reserved word but is not a supported data type.
ub

le

External variable used with multiple compilation units. No storage is
allocated. Is used to make otherwise out of scope data accessible.

extern there must be a non-extern definition at the global level in some
compilation unit.

register Is allowed as a qualifier however, has no effect.

fixed(n) Creates a fixed point decimal number where n is how many decimal
- places to implement.
unsigned Data is always positive. This is the default data type if not specified.
signed Data can be negative or positive.

volatile Tells the compiler optimizer that this variable can be changed at any
point during execution.

Data is read-only. Depending on compiler configuration, this qualifier
may just make the data read-only -AND/OR- it may place the data into

const program memory to save space. (see #DEVICE const=)
rom Forces data into program memory. Pointers may be used to this data
but they can not be mixed with RAM pointers.
Built-in basic type. Type void is used to indicate no specific type in
void places where a type is required.
readonly Writes to this variable should be dis-allowed
_bif Used for compiler built in function prototypes on the same line
__attribute__ Sets various attributes

29

CCS C Compiler

Enumerated Types

enum enumeration type: creates a list of integer constants.

enum [id] {[id[=cexpr]]}

One or more comma separated

The id after enum is created as a type large enough to the largest constant in the list. The
ids in the list are each created as a constant. By default the first id is set to zero and they
increment by one. If a = cexpr follows an id that id will have the value of the constant
expression an d the following list will increment by one.

For example:
enum colors{red, green=2, blue}; // red will be O,
green will be 2 and
// blue will be 3

Structures and Unions

Struct structure type: creates a collection of one or more variables, possibly of different
types, grouped together as a single unit.

struct[*] [id] type-qualifier [*] id [:bits]; }H(id]

{
One or more, Zero
semi-colon or more
separated

For example:

struct data record ({
int al2];
int b : 2; /*2 bits */
int c : 3; /*3 bits*/
int d;

30

Data Definitions

} data_ var; //data_record is a structure

type
//data_var 1is a variable

Union type: holds objects of different types and sizes, with the compiler keeping track of
size and alignment requirements. They provide a way to manipulate different kinds of
data in a single area of storage.

union[*] [id] { type-qualifier [*] id [:bits]; }[id]
One or more, Zero
semi-colon or more
separated

For example:

union u_tab {
int ival;

long 1lval;
float fval;
}i //u_tag is a union type that can hold a float

typedef

If typedef is used with any of the basic or special types it creates a new type name that
can be used in declarations. The identifier does not allocate space but rather may be
used as a type specifier in other data definitions.

typedef [type-qualifier] [type-specifier]
[declarator];

For example:
typedef int mybyte; // mybyte can be used
in
//declaration to
// specify the int
type
typedef short mybit; // mybyte can be used
in
//declaration to

31

CCS C Compiler

// specify the int
type
typedef enum {red, green=2,blue}colors; //colors can be used
to declare

//variable of this
enum type

Non-RAM Data Definitions

CCS C compiler also provides a custom qualifier addressmod which can be used to define
a memory region that can be RAM, program eeprom, data eeprom or external memory.
Addressmod replaces the older typemod (with a different syntax).

The usage is :

addressmod

(name, read function,write function,start addr
ess,end address, share);

Where the read_function and write_function should be blank
for RAM, or for other memory should be the following
prototype:

// read procedure for reading n bytes from the
memory starting at location addr
void read function(int32 addr,int8 *ram, int

nbytes) {
}

//write procedure for writing n bytes to the
memory starting at location addr

void write_ function(int32 addr,int8 *ram, int
nbytes) {

}

For RAM the share argument may be true if unused RAM in this
area can be used by the compiler for standard variables.

Example:
void DataEE Read(int32 addr, int8 * ram, int
bytes) {
int 1i;
for (i=0;i<bytes;i++, ram++,addr++)
*ram=read eeprom(addr) ;

32

Data Definitions
}

void DatakEE Write (int32 addr, int8 * ram, int
bytes) {
int i;
for (i=0;i<bytes;i++, ram++,addr++)
write eeprom(addr, *ram) ;

}

addressmod
(DataEE, DataEE read, DatakEE write,5,0xff);

// would define a region called DataEE
between
// 0x5 and Oxff in the chip data EEprom.

void main (void)
{
int DataEE test;
int x,y;
x=12;
test=x; // writes x to the Data EEPROM
y=test; // Reads the Data EEPROM

Note: If the area is defined in RAM then read and write functions are not required, the
variables assigned in the memory region defined by the addressmod can be treated as a
regular variable in all valid expressions. Any structure or data type can be used with an
addressmod. Pointers can also be made to an addressmod data type. The #type
directive can be used to make this memory region as default for variable allocations.

The syntaxis :
#type default=addressmodname // all the
variable declarations that

// follow
will use this memory region
#type default= // goes back
to the default mode

For example:

Type default=emi //emi is the
addressmod name defined

char buffer[8192];

#include <memoryhog.h>

#type default=

33

CCS C Compiler

Using Program Memory for Data

CCS C Compiler provides a few different ways to use program memory for data. The
different ways are discussed below:

Constant Data:

The const qualifier will place the variables into program memory. If the keyword const is
used before the identifier, the identifier is treated as a constant. Constants should be
initialized and may not be changed at run-time. This is an easy way to create lookup
tables.

The rom Qualifier puts data in program memory with 3 bytes per instruction space. The
address used for ROM data is not a physical address but rather a true byte address. The
& operator can be used on ROM variables however the address is logical not physical.
The syntax is:
const type id[cexpr] = {value}
For example:

Placing data into ROM
const int table[l1l6]1={0,1,2...15}

Placing a string into ROM

const char cstring[6]={"hello"}

Creating pointers to constants
const char *cptr;
cptr = string;

The #org preprocessor can be used to place the constant to specified address blocks.
For example:
The constant ID will be at 1C00.
#ORG 0x1C00, Ox1COF
CONST CHAR ID[10]= {"123456789"};

Note: Some extra code will precede the 123456789.

The function label_address can be used to get the address of the constant. The constant
variable can be accessed in the code. This is a great way of storing constant data in large
programs. Variable length constant strings can be stored into program memory.

A special method allows the use of pointers to ROM. This method does not contain extra
code at the start of the structure as does constant.

For example:
char rom commands([] = {“put|get|status|shutdown”};

The compiler allows a non-standard C feature to implement a constant array of variable
length strings.

The syntax is:
const char id[n] [*] = { "string", "string" ...};

Where n is optional and id is the table identifier.

34

Data Definitions

For example:
const char colors[] [*] = {"Red", "Green", "Blue"};

#ROM directive:
Another method is to use #rom to assign data to program memory.

The syntax is:
#rom address = {data, data, .., data}
For example:
Places 1,2,3,4 to ROM addresses starting at 0x1000
#rom 0x1000 = {1, 2, 3, 4}
Places null terminated string in ROM
#rom 0x1000={"hello"}
This method can only be used to initialize the program memory.

Built-in-Functions:
The compiler also provides built-in functions to place data in program memory, they are:
L write program eeprom(address,data);
- Writes data to program memory
L write program memory (address, dataptr, count);
- Writes count bytes of data from dataptr to address in program memory.

Please refer to the help of these functions to get more details on their usage and
limitations regarding erase procedures. These functions can be used only on chips that
allow writes to program memory. The compiler uses the flash memory erase and write
routines to implement the functionality.

The data placed in program memory using the methods listed above can be read from
width the following functions:

® read program memory ((address, dataptr, count)

- Reads count bytes from program memory at address to RAM at dataptr.

These functions can be used only on chips that allow reads from program memory. The
compiler uses the flash memory read routines to implement the functionality.

Named Registers

The CCS C Compiler supports the new syntax for filing a variable at the location of a
processor register. This syntax is being proposed as a C extension for embedded use.
The same functionality is provided with the non-standard #byte, #word, #bit and #locate.

The syntax is:
register _name type id;
Or
register constant type id;

35

CCS C Compiler

name is a valid SFR name with an underscore before it.

Examples:
register _status int8 status_reg;
register _T1IF int8 timer_interrupt;
register 0x04 int16 file_select_register;

36

FUNCTION DEFINITION

Function Definition

The format of a function definition is as follows:

[qualifier] id ([type-specifier id]) { [stmt] }
Optional See Below Zero or more comma Zero or more Semi-colon
separated. separated. See Statements.

See Data Types

The qualifiers for a function are as follows:
e VOID

type-specifier

#separate

#inline

#int_..

When one of the above are used and the function has a prototype (forward declaration of
the function before it is defined) you must include the qualifier on both the prototype and
function definition.

A (non-standard) feature has been added to the compiler to help get around the problems
created by the fact that pointers cannot be created to constant strings. A function that has
one CHAR parameter will accept a constant string where it is called. The compiler will
generate a loop that will call the function once for each character in the string.

Example:
void lcd putc(char c) {

}

lcd putc ("Hi There.");

37

CCS C Compiler

Overloaded Functions

Overloaded functions allow the user to have multiple functions with the same name, but

they must accept different parameters.

Here is an example of function overloading: Two functions have the same name but differ
in the types of parameters. The compiler determines which data type is being passed as a

parameter and calls the proper function.

This function finds the square root of a long integer variable.
long FindSquareRoot (long n) {
}

This function finds the square root of a float variable.

float FindSquareRoot (float n) {
}

FindSquareRoot is now called. If variable is of long type, it will call the first
FindSquareRoot() example. If variable is of float type, it will call the second
FindSquareRoot() example.

result=FindSquareRoot (variable) ;

Reference Parameters

The compiler has limited support for reference parameters. This increases the readability
of code and the efficiency of some inline procedures. The following two procedures are
the same. The one with reference parameters will be implemented with greater efficiency

when it is inline.

funct a(int*x,int*y) {
/*Traditional*/
if (*x!=5)
*y=*x+3;
}

funct_a(&a, &b) ;

funct b (intéx, inté&y) {
/*Reference params*/
if(x!=5)

38

Function Definition

y=x+3;
}

funct b(a,b);

Default Parameters

Default parameters allows a function to have default values if nothing is passed to it when

called.
int mygetc (char *c, int n=100) {
}

This function waits n milliseconds for a character over RS232. If a character is received, it
saves it to the pointer ¢ and returns TRUE. If there was a timeout it returns FALSE.

//gets a char, waits 100ms for timeout
mygetc (&c) ;

//gets a char, waits 200ms for a timeout
mygetc (&c, 200);

Variable Argument Lists

The compiler supports a variable number of parameters. This works like the ANSI
requirements except that it does not require at least one fixed parameter as ANSI does.
The function can be passed any number of variables and any data types. The access
functions are VA_START, VA_ARG, and VA_END. To view the number of arguments
passed, the NARGS function can be used.

/*

stdarg.h holds the macros and va list data type needed for variable
numpber of parameters.

*/

#include <stdarg.h>

A function with variable number of parameters requires two things. First, it requires the
ellipsis (...), which must be the last parameter of the function. The ellipsis represents the
variable argument list. Second, it requires one more variable before the ellipsis (...).
Usually you will use this variable as a method for determining how many variables have
been pushed onto the ellipsis.

Here is a function that calculates and returns the sum of all variables:

39

CCS C Compiler

int Sum(int count, ...)
{
//a pointer to the argument list
va list al;
int x, sum=0;
//start the argument list
//count is the first variable before the ellipsis
va_ start(al, count);
while (count—--) {
//get an int from the list
x = var_arg(al, int);
sum += x;
}
//stop using the list
va_end(al);
return (sum) ;

Some examples of using this new function:
x=Sum (5, 10, 20, 30, 40, 50);
y=Sum(3, a, b, c);

40

FUNCTIONAL OVERVIEW

12C

I2C™ is a popular two-wire communication protocol developed by Phillips. Many PIC
microcontrollers support hardware-based 12C™. CCS offers support for the hardware-
based I2C™ and a software-based master I2C™ device. (For more information on the
hardware-based 12C module, please consult the datasheet for you target device; not all

PICs support 12C™.)

Relevant Functions:

i2c_start()
i2c_write(data)
i2c_read()
i2c_stop()
i2c_poll()

Relevant Preprocessor:

#USE 12C

Relevant Interrupts:
#INT_SSP
#INT_BUSCOL
#INT_I2C
#INT_BUSCOL2
#INT_SSP2

Relevant Include Files:

None, all functions built-in

Relevant getenv() Parameters:

12C_SLAVE
I2C_MASTER

Example Code:

#define Device_SDA PIN_C3
#define Device_SLC PIN_C4
#use i2c(master, sda=Device_SDA,

scl=Device_SCL)

Issues a start command when in the 12C master
mode.

Sends a single byte over the 12C interface.

Reads a byte over the 12C interface.

Issues a stop command when in the 12C master
mode.

Returns a TRUE if the hardware has received a byte
in the buffer.

Configures the compiler to support I2C™ to your
specifications.

I12C or SPI activity

Bus Collision

12C Interrupt (Only on 14000)

Bus Collision (Only supported on some PIC18's)
12C or SPI activity (Only supported on some
PIC18's)

Returns a 1 if the device has 12C slave HW

Returns a 1 if the device has a 12C master H/W

/I Pin defines

/I Configure Device as Master

41

CCS C Compiler

éYTE data;
i2c_start();
i2c_write(data);
i2c_stop();

/I Data to be transmitted

/I Issues a start command when in the 12C master
mode.

/I Sends a single byte over the 12C interface.

/I lssues a stop command when in the 12C master
mode.

ADC

These options let the user configure and use the analog to digital converter module.
They are only available on devices with the ADC hardware. The options for the functions
and directives vary depending on the chip and are listed in the device header file. On
some devices there are two independent ADC modules, for these chips the second
module is configured using secondary ADC setup functions (Ex. setup_ADC?2).

Relevant Functions:

setup_adc(mode)
setup_adc_ports(value)
set_adc_channel(channel)

read_adc(mode)
adc_done()

Relevant Preprocessor:
#DEVICE ADC=xx

Relevant Interrupts:
INT_AD

INT_ADOF

Relevant Include Files:
None, all functions built-in

Relevant getenv() parameters:

ADC_CHANNELS
ADC_RESOLUTION

Sets up the a/d mode like off, the adc clock etc.
Sets the available adc pins to be analog or digital.
Specifies the channel to be use for the a/d call.
Starts the conversion and reads the value. The
mode can also control the functionality.

Returns 1 if the ADC module has finished its
conversion.

Configures the read_adc return size. For example,

using a PIC with a 10 bit A/D you can use 8 or 10 for

xx- 8 will return the most significant byte, 10 will
return the full A/D reading of 10 bits.

Interrupt fires when a/d conversion is complete
Interrupt fires when a/d conversion has timed out

Number of A/D channels
Number of bits returned by read_adc

42

Functional Overview

Example Code:
#DEVICE ADC=10

long value;

setup_adc(ADC_CLOCK_INTERNA
L);
setup_adc_ports(ALL_ANALOG);
set_adc_channel(0);

delay_us(10);

value=read_adc();

read_adc(ADC_START_ONLY);
value=read_adc(ADC_READ_ONLY
)i

/lenables the a/d module

/land sets the clock to internal adc clock

/Isets all the adc pins to analog

/lthe next read_adc call will read channel 0

/la small delay is required after setting the channel
/land before read

/Istarts the conversion and reads the result

/land store it in value

/lonly starts the conversion

/lreads the result of the last conversion and store it
in //value. Assuming the device hat a 10bit ADC
module, //value will range between 0-3FF. If
#DEVICE ADC=8 had //been used instead the result
will yield O-FF. If #DEVICE //ADC=16 had been
used instead the result will yield 0-//FFCO

Analog Comparator

These functions set up the analog comparator module. Only available in some devices.

Relevant Functions:

setup_comparator(mode)

Relevant Preprocessor:
None

Relevant Interrupts:
INT_COMP

Relevant Include Files:
None, all functions built-in

Relevant getenv() Parameters:
Returns 1 if the device has a
comparator

Enables and sets the analog comparator module.
The options vary depending on the chip. Refer to
the header file for details.

Interrupt fires on comparator detect. Some chips
have more than one comparator unit, and thus,
more interrupts.

COMP

43

CCS C Compiler

Example Code:

setup_comparator(A4_A5_NC_NC);
if(C10UT)

output_low(PIN_DO);

else

output_high(PIN_D1);

CAN Bus

These functions allow easy access to the Controller Area Network (CAN) features
included with the MCP2515 CAN interface chip and the PIC18 MCU. These functions will
only work with the MCP2515 CAN interface chip and PIC microcontroller units containing
either a CAN or an ECAN module. Some functions are only available for the ECAN
module and are specified by the work ECAN at the end of the description. The listed
interrupts are no available to the MCP2515 interface chip.

Relevant Functions:

can_init(void);

can_set_baud(void);

can_set_mode
(CAN_OP_MODE mode);

can_set_functional_mode
(CAN_FUN_OP_MODE mode);

can_set_id(int* addr, int32 id, intl
ext);

can_get_id(int * addr, intl ext);

can_putd
(int32id, int * data, int len,
int priority, int1 ext, intl rtr);

can_getd
(int32 & id, int * data, int & len,

Initializes the CAN module and clears all the filters
and masks so that all messages can be received
from any ID.

Initializes the baud rate of the CAN bus to125kHz, if
using a 20 MHz clock and the default CAN-BRG
defines, it is called inside the can_init() function so
there is no need to call it.

Allows the mode of the CAN module to be changed
to configuration mode, listen mode, loop back mode,
disabled mode, or normal mode.

Allows the functional mode of ECAN modules to be
changed to legacy mode, enhanced legacy mode, or
first in firstout (fifo) mode. ECAN

Can be used to set the filter and mask ID's to the
value specified by addr. It is also used to set the ID
of the message to be sent.

Returns the ID of a received message.

Constructs a CAN packet using the given arguments

and places it in one of the available transmit buffers.

Retrieves a received message from one of the CAN
buffers and stores the relevant data in the

44

Functional Overview

struct rx_stat & stat);

can_enable_rtr(PROG_BUFFER b);

can_disable_rtr(PROG_BUFFER b);

can_load_rtr
(PROG_BUFFER b, int * data, int
len);

can_enable_filter(long filter);

can_disable_filter(long filter);

can_associate_filter_to_buffer
(CAN_FILTER_ASSOCIATION_BUF
FERS

buffer, CAN_FILTER_ASSOCIATION
filter);

can_associate_filter_to_mask
(CAN_MASK_FILTER_ASSOCIATE
mask,

CAN_FILTER_ASSOCIATION filter);

can_fifo_getd(int32 & id,int * data,
int &len,struct rx_stat & stat);
Relevant Preprocessor:

Relevant Interrupts:
#int_canirx

#int_canwake

#int_canerr

#int_cantx0

#int_cantx1

#int_cantx2

#int_canrx0

referenced function parameters.

Enables the automatic response feature which
automatically sends a user created packet when a
specified ID is received. ECAN

Disables the automatic response feature. ECAN

Creates and loads the packet that will automatically
transmitted when the triggering ID is received.
ECAN

Enables one of the extra filters included in the ECAN
module. ECAN

Disables one of the extra filters included in the
ECAN module. ECAN

Used to associate a filter to a specific buffer. This
allows only specific buffers to be filtered and is
available in the ECAN module. ECAN

Used to associate a mask to a specific buffer. This
allows only specific buffer to have this mask applied.
This feature is available in the ECAN module. ECAN

Retrieves the next buffer in the fifo buffer. Only
available in the ECON module while operating in fifo
mode. ECAN

None

This interrupt is triggered when an invalid packet is
received on the CAN.

This interrupt is triggered when the PIC is woken up
by activity on the CAN.

This interrupt is triggered when there is an error in
the CAN module.

This interrupt is triggered when transmission from
buffer 0 has completed.

This interrupt is triggered when transmission from
buffer 1 has completed.

This interrupt is triggered when transmission from
buffer 2 has completed.

This interrupt is triggered when a message is

45

CCS C Compiler

#int_canrx1

Relevant Include Files:
can-mcp2510.c

can-18xxx8.c
can-18F4580.c

Relevant getenv() Parameters:
Example Code:

can_init();
can_putd(0x300,data,8,3, TRUE,FAL
SE);

can_getd(ID,data,len,stat);

received in buffer 0.
This interrupt is triggered when a message is
received in buffer 1.

Drivers for the MCP2510 and MCP2515 interface
chips

Drivers for the built in CAN module
Drivers for the build in ECAN module

None

[l initializes the CAN bus
/I places a message on the CAN buss with

//'ID = 0x300 and eight bytes of data pointed to by
/I “data”, the TRUE creates an extended ID, the
/I FALSE creates

/I retrieves a message from the CAN bus storing the
//'ID in the ID variable, the data at the array pointed

to by

/[“data’, the number of data bytes in len, and
statistics

// about the data in the stat structure.

CCP

These options lets to configure and use the CCP module. There might be multiple CCP
modules for a device. These functions are only available on devices with CCP hardware.
They operate in 3 modes: capture, compare and PWM. The source in capture/compare
mode can be timerl or timer3 and in PWM can be timer2 or timer4. The options available
are different for different devices and are listed in the device header file. In capture mode
the value of the timer is copied to the CCP_X register when the input pin event occurs. In
compare mode it will trigger an action when timer and CCP_x values are equal and in
PWM mode it will generate a square wave.

Relevant Functions:

setup_ccpl(mode)

set_pwml_duty(value)

Relevant Preprocessor:
Relevant Interrupts :

INT_CCP1

Sets the mode to capture, compare or PWM. For
capture

The value is written to the pwm1 to set the duty.
None

Interrupt fires when capture or compare on CCP1

46

Functional Overview

Relevant Include Files: None, all functions built-in

Relevant getenv() parameters:
CCP1

Example Code:
#int_ccpl
void isr()

Returns 1 if the device has CCP1

rise = CCP_1; /ICCP_1 is the time the pulse went high
fall = CCP_2; /ICCP_2 is the time the pulse went low
pulse_width = fall - rise; /Ipulse width

}

setup_ccpl(CCP_CAPTURE_RE); // Configure CCP1 to capture rise
setup_ccp2(CCP_CAPTURE_FE); /I Configure CCP2 to capture fall
setup_timer_1(T1_INTERNAL); ~// Starttimer1

Some chips also have fuses which allows to multiplex the ccp/pwm on different
pins. So check the fuses to see which pin is set by default. Also fuses to
enable/disable pwm outputs.

Code Profile

Profile a program while it is running. Unlike in-circuit debugging, this tool grabs
information while the program is running and provides statistics, logging and tracing of
it's execution. This is accomplished by using a simple communication method between
the processor and the ICD with minimal side-effects to the timing and execution of the
program. Another benefit of code profile versus in-circuit debugging is that a program
written with profile support enabled will run correctly even if there is no ICD connected.

In order to use Code Profiling, several functions and pre-processor statements need to
be included in the project being compiled and profiled. Doing this adds the proper code
profile run-time support on the microcontroller.

See the help file in the Code Profile tool
for more help and usage examples.

Relevant Functions:

profileout() Send a user specified message or variable to be
displayed or logged by the code profile tool.

Relevant Pre-Processor:

#use profile Global configuration of the code profile run-time on
the microcontroller.

a7

CCS C Compiler

Dynamically enable/disable specific elements of the

fiprofile profiler.

Relevant Interrupts: The profiler can be configured to use a
microcontroller's internal timer for more accurate
timing of events over the clock on the PC. This
timer is configured using the #profile pre-processor
command.

Relevant Include Files: None — all the functions are built into the compiler.

Relevant getenv(): None

#include <18F4520.h>
#use delay(crystal=10MHz,
clock=40MHz)
#profile functions,
parameters
void main (void)
{
int adc;
setup adc (ADC CLOCK INTER
. NAL) ;
Example Code: set adc channel (0);
for(;;)
{
adc = read adc();
profileout (adc) ;
delay ms(250);

Configuration Memory

On all PIC18 Family of chips, the configuration memory is readable and writable. This
functionality is not available on the PIC16 Family of devices..

Relevant Functions:

write_configuration_memo Writes count bytes, no erase needed
ry
(ramaddress, count)

48

Functional Overview

or
write_configuration_memo Writes count bytes, no erase needed starting at byte
ry address offset

(offset,ramaddress, count)
read_configuration_memo
ry) .
(ramaddress,count) Read count bytes of configuration memory
Relevant Preprocessor:
None

Relevant Include Files:
None, all functions built-in

Relevant getenv()
parameters:
None

Example Code:
For PIC18f452
int1l6 data=0xc32;

write_configuration_memo //writes 2 bytes to the configuration memory
ry(data,2);

DAC

These options let the user configure and use the digital to analog converter module. They
are only available on devices with the DAC hardware. The options for the functions and
directives vary depending on the chip and are listed in the device header file.

Relevant Functions:

setup_dac(divisor) Sets up the DAC e.g. Reference voltages
dac_write(value) Writes the 8-bit value to the DAC module

Sets up the d/a mode e.g. Right enable, clock divisor

Writes the 16-bit value to the specified channel
Relevant Preprocessor:

#USE DELAY(clock=20M, Aux: crystal=6M, clock=3M)

Relevant Interrupts: None

Relevant Include Files: None, all functions built-in

49

CCS C Compiler

Relevant getenv()
parameters:

Example Code:

None

int8 i=0;

setup_dac (DAC_VSS_VDD);
while (TRUE) {

itt;

dac_write(i);

Data Eeprom

The data eeprom memory is readable and writable in some chips. These options lets the
user read and write to the data eeprom memory. These functions are only available in

flash chips.

Relevant Functions:

(8 bit or 16 bit depending
on the device)

read_eeprom(address)

write_eeprom(address,
value)

Relevant Preprocessor:
#ROM address={list}

write_eeprom = noint

Relevant Interrupts:
INT_EEPROM

Relevant Include Files:
None, all functions built-in

Reads the data EEPROM memory location

Erases and writes value to data EEPROM location
address.

Reads N bytes of data EEPROM starting at memory
location address. The maximum return size is int64.
Reads from EEPROM to fill variable starting at address
Reads N bytes, starting at address, to pointer

Writes value to EEPROM address

Writes N bytes to address from pointer

Can also be used to put data EEPROM memory data
into the hex file.

Allows interrupts to occur while the write_eeprom()
operations is polling the done bit to check if the write
operations has completed. Can be used as long as no
EEPROM operations are performed during an ISR.

Interrupt fires when EEPROM write is complete

Relevant getenv() parameters:

50

Functional Overview

DATA_EEPROM Size of data EEPROM memory.

Example Code:

For 18F452 /linserts this data into the hex file. The data eeprom

#rom 0xf00000={1,2,3,4,5} address
/ldiffers for different family of chips. Please refer to the
/lprogramming specs to find the right value for the
device

write_eeprom(0x0,0x12); /Iwrites 0x12 to data eeprom location 0
value=read_eeprom(0x0); //reads data eeprom location Ox0 returns 0x12

#ROM

O0X007FFC00={1,2,3,4,5} /I Inserts this data into the hex file

/I The data EEPROM address differs between PICs
/I Please refer to the device editor for device specific

values.
write_eeprom(0x10, . .
0x1337); /l Writes 0x1337 to data EEPROM location 10.

value=read_eeprom(0x0); /l Reads data EEPROM location 10 returns 0x1337.

Data Signal Modulator

The Data Signal Modulator (DSM) allows the user to mix a digital data stream (the
“modulator signal”) with a carrier signal to produce a modulated output. Both the carrier
and the modulator signals are supplied to the DSM module, either internally from the
output of a peripheral, or externally through an input pin. The modulated output signal is
generated by performing a logical AND operation of both the carrier and modulator signals
and then it is provided to the MDOUT pin. Using this method, the DSM can generate the
following types of key modulation schemes:

. Frequency Shift Keying (FSK)
. Phase Shift Keying (PSK)
. On-Off Keying (OOK)
Relevant Functions: (8 bit or 16 bit depending on the device)

setup_dsm(mode,source,ca Configures the DSM module and selects the source signal
rrier) and carrier signals.

setup_dsm(TRUE) Enables the DSM module.

51

CCS C Compiler

setup_dsm(FALSE)

Relevant Preprocessor:

Relevant Interrupts:

Relevant Include Files:

Relevant getenv()
parameters:

Example Code:
setup_dsm(DSM_ENABLED

I
DSM_OUTPUT_ENABLED,

DSM_SOURCE_UART1,
DSM_CARRIER_HIGH_VSS

I
DSM_CARRIER_LOW_OC1)

if(input(PIN_BO))
setup_dsm(FALSE);

else
setup_dsm(TRUE);

Disables the DSM module.

None

None

None, all functions built-in

None

/[Enables DSM module with the output enabled and
selects UART1

/las the source signal and VSS as the high carrier signal
and OC1's

/IPWM output as the low carrier signal.

Disable DSM module
Enable DSM module

External Memory

Some PIC18 devices have the external memory functionality where the external memory
can be mapped to external memory devices like (Flash, EPROM or RAM). These
functions are available only on devices that support external memory bus.

General Purpose 1/O

These options let the user configure and use the 1/O pins on the device. These functions
will affect the pins that are listed in the device header file.

52

Functional Overview

Relevant Functions:

output_high(pin)
output_low(pin)
output_float(pin)

output_x(value)
output_bit(pin,value)
input(pin)
input_state(pin)

set_tris_x(value)

input_change_x()

set open drain_ x(value)

set_input_level_x(value)

Relevant Preprocessor:
#USE
STANDARD_IO(port)

#USE FAST_IO(port)

#USE FIXED_IO
(port_outputs=;in,pin?)

Relevant Interrupts:

Relevant Include Files:

Relevant getenv()
parameters:

Sets the given pin to high state.

Sets the given pin to the ground state.

Sets the specified pin to the input mode. This will allow the
pin to float high to represent a high on an open collector
type of connection.

Outputs an entire byte to the port.

Outputs the specified value (0,1) to the specified 1/O pin.

The function returns the state of the indicated pin.
This function reads the level of a pin without changing the
direction of the pin as INPUT() does.

Sets the value of the I/O port direction register. A '1'is an
input and '0' is for output.

This function reads the levels of the pins on the port, and
compares them to the last time they were read to see if
there was a change, 1 if there was, 0 if there was not.
This function sets the value of the 1/0 port

Open-Drain register. A | makes the output

open-drain and 0 makes the output push-pull.

This function sets the value of the 1/0 port

Input Level Register. A 1 sets the input level

to ST and O sets the input level to TTL.

This compiler will use this directive be default and it will
automatically inserts code for the direction register
whenever an I/O function like output_high() or input() is
used.

This directive will configure the 1/O port to use the fast
method of performing I/O. The user will be responsible for
setting the port direction register using the set_tris_x()
function.

This directive set particular pins to be used an input or
output, and the compiler will perform this setup every time
this pin is used.

None

None, all functions built-in

PIN:pb ----Returns a 1 if bit b on port p is on this part

53

CCS C Compiler

Example Code:

#use fast io(b)\

Int8 Tris value= O0xO0F;

intl Pin_;alue;

set_tris b(Tris value); //Sets
BO:B3 as input and B4:B7 as output

output high (PIN B7); //Set the pin B7 to
High
If (input (PIN BO0)) { //Read the value on pin

B0, set B7 to low if pin BO is high
output high (PIN B7);}

Internal LCD

Some families of PIC mic

rocontrollers can drive a glass segment LCD directly, without the

need of an LCD controller. For example, the PIC16C92X, PIC16F91X, and PIC16F193X
series of chips have an internal LCD driver module.

Relevant Functions:

setup_lcd
(mode, prescale,
[segments])

Icd_symbol
(symbol,
segment_b7 ...
segment_b0)

lcd_load(ptr, offset,
length)

Icd_contrast

(contrast)

Relevant Preprocessor:
None

Relevant Interrupts:

#int_lcd

Relevant Inlcude
Files:

Configures the LCD Driver Module to use the specified mode,
timer prescaler, and segments. For more information on valid
modes and settings, see the setup_lcd() manual page and the
*.h header file for the PIC micro-controller being used.

The specified symbol is placed on the desired segments,
where segment_b7 to segment_b0 represent SEGXX pins on
the PIC micro-controller. For example, if bit 0 of symbol is set,
then segment_b0 is set, and if segment_b0 is 15, then SEG15
would be set.

Writes length bytes of data from pointer directly to the LCD
segment memory, starting with offset.

Passing a value of 0 — 7 will change the contrast of the LCD
segments, 0 being the minimum, 7 being the maximum.

LCD frame is complete, all pixels displayed

None, all functions built-in to the compiler.

Relevant getenv() Parameters:

54

Functional Overview

LCD Returns TRUE if the device has an Internal LCD Driver

Module.

/l How each segment of the LCD is set (on or off) for the ASCII
digits 0 to 9.

byte CONST DIGIT_MAP[10] = {OxFC, 0x60, OxDA, 0xF2,
0x66, 0xB6, OXBE, OXEO, OXFE, OXE6};

/I Define the segment information for the first digit
of the LCD
#define DIGIT1 COM1+20, COM1+18,

Example Program:

COM2+18, COM3+20, COM2+28, COM1+28,
COM2+20, COM3+18

/I Displays the digits 0 to 9 on the first digit of the LCD.

for(i = 0; 1 <= 9; i++) {
lcd symbol (DIGIT MAP[i], DIGIT1);
delay ms(1000);

Internal Oscillator

Many chips have internal oscillator. There are different ways to configure the internal
oscillator. Some chips have a constant 4 Mhz factory calibrated internal oscillator. The
value is stored in some location (mostly the highest program memory) and the compiler
moves it to the osccal register on startup. The programmers save and restore this value
but if this is lost they need to be programmed before the oscillator is functioning properly.
Some chips have factory calibrated internal oscillator that offers software selectable
frequency range(from 31Kz to 8 Mhz) and they have a default value and can be switched
to a higher/lower value in software. They are also software tunable. Some chips also
provide the PLL option for the internal oscillator.

Relevant Functions:

setup_oscillator(mode,
finetune)

Relevant Preprocessor:
Relevant Interrupts:
INT_OSC_FAIL or INT_OSCF
Relevant Include Files:

Sets the value of the internal oscillator and also
tunes it. The options vary depending on the chip and
are listed in the device header files.

None

Interrupt fires when the system oscillator fails and
the processor switches to the internal oscillator.
None, all functions built-in

55

CCS C Compiler

Relevant getenv() parameters:

Example Code:

setup_oscillator(OSC_32MHZ);

None
For PIC18F8722

/Isets the internal oscillator to 32MHz (PLL enabled)

If the internal oscillator fuse option are specified in the #fuses and a valid clock is
specified in the #use delay(clock=xxx) directive the compiler automatically sets
up the oscillator. The #use delay statements should be used to tell the compiler

about the oscillator speed.

Interrupts

The following functions allow for the control of the interrupt subsystem of the
microcontroller. With these functions, interrupts can be enabled, disabled, and cleared.
With the preprocessor directives, a default function can be called for any interrupt that
does not have an associated ISR, and a global function can replace the compiler

generated interrupt dispatcher.

Relevant Functions:

disable_interrupts()

enable_interrupts()
ext_int_edge()

clear_interrupt()
interrupt_active()

interrupt _enabled()

Relevant Preprocessor:

#DEVICE HIGH_INTS=
#INT_XXX fast

Relevant Interrupts:
#int_default

Disables the specified interrupt.
Enables the specified interrupt.

Enables the edge on which the edge interrupt should
trigger. This can be either rising or falling edge.

This function will clear the specified interrupt flag.
This can be used if a global isr is used, or to prevent
an interrupt from being serviced.

This function checks the interrupt flag of specified
interrupt and returns true if flag is set.

This function checks the interrupt enable flag of the
specified interrupt and returns TRUE if set.

This directive tells the compiler to generate code for
high priority interrupts.

This directive tells the compiler that the specified
interrupt should be treated as a high priority interrupt.

This directive specifies that the following function

56

Functional Overview

#int_global

#int_xxx

Relevant Include Files:
none, all functions built in.

Relevant getenv() Parameters:

none

Example Code:
#int_timer0
void timerQinterrupt()

enable_interrupts(TIMERO);
disable_interrtups(TIMERO);
clear_interrupt(TIMERO);

should be called if an interrupt is triggered but no
routine is associated with that interrupt.

This directive specifies that the following function
should be called whenever an interrupt is triggered.
This function will replace the compiler generated
interrupt dispatcher.

This directive specifies that the following function
should be called whenever the xxx interrupt is
triggered. If the compiler generated interrupt
dispatcher is used, the compiler will take care of
clearing the interrupt flag bits.

/I #int_timer associates the following function with the
I interrupt service routine that should be called

/I enables the timerQ interrupt

/I disables the timer0 interrupt

// clears the timerO interrupt flag

Low Voltage Detect

These functions configure the high/low voltage detect module. Functions available on the
chips that have the low voltage detect hardware.

Relevant Functions:

setup_low_volt_detect(mode)

Relevant Preprocessor:
None

Relevant Interrupts :

Sets the voltage trigger levels and also the mode
(below or above in case of the high/low voltage detect
module). The options vary depending on the chip and
are listed in the device header files.

57

CCS C Compiler

INT_LOWVOLT

Relevant Include Files:
None, all functions built-in

Relevant getenv()

parameters:
None

Example Code:

Interrupt fires on low voltage detect

For PIC18F8722
setup_low volt detect (LVD_36|LVD_TRIGGER ABOVE
) //sets the trigger level as 3.6 volts and

//
trigger direction as above. The interrupt
//if enabled is fired
when the voltage is
//above 3.6 volts.

PMP/EPMP

The Parallel Master Port (PMP)/Enhanced Parallel Master Port (EPMP) is a parallel 8-
bit/16-bit I/0O module specifically designed to communicate with a wide variety of parallel
devices. Key features of the PMP module are:

- 8 or 16 Data lines

- Up to 16 or 32 Programmable Address Lines
- Up to 2 Chip Select Lines

- Programmable Strobe option

- Address Auto-Increment/Auto-Decrement

- Programmable Address/Data Multiplexing

- Programmable Polarity on Control Signals

- Legacy Parallel Slave(PSP) Support

- Enhanced Parallel Slave Port Support

- Programmable Wait States

Relevant Functions:

setup_psp
(options,address_mask)
setup_pmp_csx(options,[off
set])

setup_psp_es(options)

This will setup the PMP/EPMP module for various mode
and specifies which address lines to be used.

This will setup the PSP module for various mode and
specifies which address lines to be used.

Sets up the Chip Select X Configuration, Mode and
Base Address registers

Sets up the Chip Select X Configuration and Mode
registers

58

Functional Overview

psp_input_full()

psp_output_full()

Relevant Preprocessor:

None

Relevant Interrupts :
#INT_PMP
Relevant Include Files:

Relevant getenv()
parameters:

Example Code:

Write the data byte to the next buffer location.

This will write a byte of data to the next buffer location
or will write a byte to the specified buffer location.
Reads a byte of data.

psp_read() will read a byte of data from the next buffer
location and psp_read (address) will read the buffer
location address.

Configures the address register of the PMP module with
the destination address during Master mode operation.
This will return the status of the output buffer underflow
bit.

This will return the status of the input buffers.

This will return the status of the input buffers.

This will return the status of the output buffers.

This will return the status of the output buffers.

Interrupt on read or write strobe

None, all functions built-in

None

setup pmp(PAR ENABLE |
mode with

// Sets up Master

// address lines
PMAQ : PMA7
PAR MASTER MODE 1 |
PAR_STOP IN IDLE,OxOFF) ;

if (pmp output full())
{
pmp_write (next byte);
}

Power PWM

These options lets the user configure the Pulse Width Modulation (PWM) pins. They are
only available on devices equipped with PWM. The options for these functions vary
depending on the chip and are listed in the device header file.

Relevant Functions:

59

CCS C Compiler

setup_power_pwm(config)

setup_power_pwm_pins(mo
dule x)

set_power_pwmx_duty(duty)

set_power_pwm_override(p
wm,override,value)
Relevant Preprocessor:
Relevant Interrupts:
#INT_PWMTB

Relevant getenv()
Parameters:

Example Code:

Sets up the PWM clock, period, dead time etc.

Configure the pins of the PWM to be in
Complimentary, ON or OFF mode.

Stores the value of the duty cycle in the PDCXL/H
register. This duty cycle value is the time for which the
PWM is in active state.

This function determines whether the OVDCONS or the
PDC registers determine the PWM output .
None

PWM Timebase Interrupt (Only available on
PIC18XX31)
None

long duty cycle, period;

// Configures PWM pins
to be ON, OFF

// or in Complimentary
mode.

setup power pwm pins (PWM COMPLEMENTARY
,PWM _OFF, PWM OFF, PWM OFF ;

// Sets up PWM clock ,
postscale and

// period. Here period is

used to set the

// PWM Frequency as
follows:

// Frequency=Fosc/ (4*
(period+1)

// *postscale)

setup_power pwm(PWM CLOCK DIV 4|PWM FREE
RUN,1,0,period,0,1,0);
set power pwmO duty(duty cycle)); //
Sets the duty cycle of the PWM 0,1 in

//

Complementary mode

60

Program Eeprom

Functional Overview

The Flash program memory is readable and writable in some chips and is just readable in
some. These options lets the user read and write to the Flash program memory. These
functions are only available in flash chips.

Relevant Functions:

read_program_eeprom(addr
ess)

write_program_eeprom(addr
ess, value)
erase_program_eeprom(addr
ess)

write_program_memory(addr
ess,dataptr,count)

read_program_memory(addr
ess,dataptr,count)

Relevant Preprocessor:
#ROM address={list}

#DEVICE(WRITE_EEPROM=
ASYNC)

Relevant Interrupts:
INT_EEPROM

Relevant Include Files:
None, all functions built-in

Relevant getenv()
parameters
PROGRAM_MEMORY
READ_PROGRAM
FLASH_WRITE_SIZE
FLASH_ERASE_SIZE

Example Code:

Reads the program memory location (16 bit or 32 bit
depending on the device).

Writes value to program memory location address.

Erases FLASH_ERASE_SIZE bytes in program
memory.

Writes count bytes to program memory from dataptr to
address. When address is a mutiple of
FLASH_ERASE_SIZE an erase is also performed.

Read count bytes from program memory at address to
dataptr.

Can be used to put program memory data into the hex
file.

Can be used with #DEVICE to prevent the write
function from hanging. When this is used make sure the
eeprom is not written both inside and outside the ISR.

Interrupt fires when eeprom write is complete.

Size of program memory

Returns 1 if program memory can be read
Smallest number of bytes written in flash
Smallest number of bytes erased in flash

For 18F452 where the write size is 8 bytes and erase size is 64 bytes

#rom 0xa00={1,2,3,4,5}
erase_program_eeprom(0Ox1

/linserts this data into the hex file.

/lerases 64 bytes strting at 0x1000

61

CCS C Compiler

000);

‘(’)"(;,'(t)i—l%oﬁ;ram—ee'orom(0X10 Ihwrites 0x1234 to 0x1000
value=read_program_eepro /lreads 0x1000 returns 0x1234

m(0x1000);

write_program_memory(0x1 //erases 64 bytes starting at 0x1000 as 0x1000 is a
000,data,8); multiple

//of 64 and writes 8 bytes from data to 0x1000
read_progr.am_memory(Oxlo /lreads 8 bytes to value from 0x1000
00,value,8);
erase_program_eeprom(0x1 //erases 64 bytes starting at 0x1000
000);
write_program_memory(0x1
010,data,8);

read_program_memory(0x1 //reads 8 bytes to value from 0x1000
000,value,8);
For chips where getenv("FLASH_ERASE_SIZE") > getenv("FLASH_WRITE_SIZE")
WRITE_PROGRAM_EEPR Writes 2 bytes,does not erase (use
OM - ERASE_PROGRAM_EEPROM)
Writes any number of bytes,will erase a block whenever
WRITE_PROGRAM_MEM the first (lowest) byte in a block is written to. If the first
ORY - address is not the start of a block that block is not
erased.
ERASE_PROGRAM_EEPR Will erase a block. The lowest address bits are not
OM - used.

/lwrites 8 bytes from data to 0x1000

For chips where getenv("FLASH_ERASE_SIZE") = getenv("FLASH_WRITE_SIZE")
WRITE_PROGRAM_EEPROM Writes 2 bytes, no erase is needed.

WRITE_PROGRAM_MEMOR Writes any number of bytes, bytes outside the range of

Y - the write block are not changed. No erase is needed.
ERASE_PROGRAM_EEPRO Not available.
M -

These options let to configure and use the Parallel Slave Port on the supported devices.

Relevant Functions:

setup_psp(mode) Enables/disables the psp port on the chip

Returns 1 if the output buffer is full(waiting to be read
by the external bus)

psp_input_full() Returns 1 if the input buffer is full(waiting to read by the

cpu)

psp_output_full()

62

Functional Overview

Returns 1 if a write occurred before the previously

psp_overflow() written byte was read

Relevant Preprocessor: None

Relevant Interrupts :

INT_PSP Interrupt fires when PSP data is in
Relevant Include Files: None, all functions built-in
Relevant getenv() PSP

parameters:

Returns 1 if the device has PSP

Example Code: while (psp output full()); //waits
till the output buffer is cleared
psp_data=command; //writes to
the port

while (!input buffer full()); //waits
till input buffer is cleared
if (psp_overflow())

error=true //if there is
an overflow set the error flag
elise

data=psp data; //1if there is

no overflow then read the port

QEI

The Quadrature Encoder Interface (QEI) module provides the interface to incremental
encoders for obtaining mechanical positional data.

Relevant Functions:

setup_gei(options, Configures the QEI module.
filter,maxcount)

gei_status() Returns the status of the QUI module.
gei_set_count(value) Write a 16-bit value to the position counter.

gei_get_count() Reads the current 16-bit value of the position counter.

Relevant None

Preprocessor:

Relevant Interrupts : #INT_QEI - Interrupt on rollover or underflow of the position
counter

63

CCS C Compiler

Relevant Include Files: None, all functions built-in

Relevant getenv()

parameters: None

Example Code: intl6 value;
setup_gei (QEI MODE X2 | //Setup the
QEI module

QEI TIMER INTERNAL,
QEI FILTER DIV 2,QEI FORWARD);

Value=gei get count(); //Read the
count

RS2321/0

These functions and directives can be used for setting up and using RS232 1/0
functionality.

Relevant Functions:

getc() or getch() Gets a character on the receive pin (from the specified
getchar() or fgetc() stream in case of fgetc, stdin by default). Use KBHIT to
check if the character is available.

Gets a string on the receive pin (from the specified stream in
case of fgets, STDIN by default). Use getc to receive each

gets() or fgets() character until return is encountered.

putc() or putchar() or Puts a character over the transmit pin (on the specified
fputc() stream in the case of fputc, stdout by default)

Puts a string over the transmit pin (on the specified stream

puts() or fputs() in the case of fputc, stdout by default). Uses putc to send
each character.

printf() or fprintf() Prints the formatted string (on the specified stream in the
case of fprintf, stdout by default). Refer to the printf help for
details on format string.

Return true when a character is received in the buffer in
case of hardware RS232 or when the first bit is sent on the

kbhit() RCV pin in case of software RS232. Useful for polling
without waiting in getc.

64

Functional Overview

setup_uart(baud,[strea
m])

or

setup_uart_speed(bau
d,[stream])

assert(condition)

perror(message)

putc_send() or
fputc_send()

rcv_buffer_bytes()

tx_buffer_bytes()

tx_buffer_full()

receive_buffer_full()

tx_buffer_available()
#useRS232
Relevant Interrupts:

INT_RDA
INT_TBE

Used to change the baud rate of the hardware UART at run-
time. Specifying stream is optional. Refer to the help for
more advanced options.

Checks the condition and if false prints the file name and
line to STDERR. Will not generate code if #DEFINE
NODEBUG is used.

Prints the message and the last system error to STDERR.

When using transmit buffer, used to transmit data from
buffer. See function description for more detail on when
needed.

When using receive buffer, returns the number of bytes in
buffer that still need to be retrieved.

When using transmit buffer, returns the number of bytes in
buffer that still need to be sent.

When using transmit buffer, returns TRUE if transmit buffer
is full.

When using receive buffer, returns TRUE if receive buffer is
full.

When using transmit buffer, returns number of characters
that can be put into transmit buffer before it overflows.
Configures the compiler to support RS232 to specifications.

Interrupt fires when the receive data available
Interrupt fires when the transmit data empty

Some chips have more than one hardware UART, and hence more interrupts.

Relevant Include Files:

None, all functions
built-in

65

CCS C Compiler

Relevant getenv()

parameters:

UART Returns the number of UARTSs on this PIC

AUART Returns true if this UART is an advanced UART

UART_RX Ilile’\tlug?;)the receive pin for the first UART on this PIC (see

UART_TX Returns the transmit pin for the first UART on this PIC

UARTZ2_RX Returns the receive pin for the second UART on this PIC

UART2_TX TX — Returns the transmit pin for the second UART on this
PIC

Example Code:

/*configure and enable uart, use first hardware UART on PIC*/
#fuse rs232 (uartl, baud=9600)

/* print a string*/
printf ("enter a character");

/* get a character*/

if (kbhit()) //check if a character
has been received
c=getc() ; //read character from
UART

RTOS

These functions control the operation of the CCS Real Time Operating System (RTOS).
This operating system is cooperatively multitasking and allows for tasks to be scheduled
to run at specified time intervals. Because the RTOS does not use interrupts, the user
must be careful to make use of the rtos_yield() function in every task so that no one task is
allowed to run forever.

Relevant Functions:

rtos_run() Begins the operation of the RTOS. All task management
tasks are implemented by this function.

This function terminates the operation of the RTOS and
rtos_terminate() returns operation to the original program. Works as a
return from the rtos_run()function.

66

Functional Overview

rtos_enable(task)

rtos_disable(task)

rtos_msg_poll()

rtos_msg_read()

rtos_msg_send(task,byt
e)

rtos_yield()

rtos_signal(sem)

rtos_wait(sem)

rtos_await(expre)

rtos_overrun(task)

rtos_stats(task,stat)

Relevant Preprocessor:
#USE RTOS(options)

#TASK(options)
#TASK

Enables one of the RTOS tasks. Once a task is enabled,
the rtos_run() function will call the task when its time
occurs. The parameter to this function is the name of
task to be enabled.

Disables one of the RTOS tasks. Once a task is disabled,
the rtos_run() function will not call this task until it is
enabled using rtos_enable(). The parameter to this
function is the name of the task to be disabled.

Returns true if there is data in the task's message queue.

Returns the next byte of data contained in the task's
message queue.

Sends a byte of data to the specified task. The data is
placed in the receiving task's message queue.

Called with in one of the RTOS tasks and returns control
of the program to the rtos_run() function. All tasks should
call this function when finished.

Increments a semaphore which is used to broadcast the
availability of a limited resource.

Waits for the resource associated with the semaphore to
become available and then decrements to semaphore to
claim the resource.

Will wait for the given expression to evaluate to true
before allowing the task to continue.

Will return true if the given task over ran its alloted time.

Returns the specified statistic about the specified task.
The statistics include the minimum and maximum times
for the task to run and the total time the task has spent
running.

This directive is used to specify several different RTOS
attributes including the timer to use, the minor cycle time
and whether or not statistics should be enabled.

This directive tells the compiler that the following function
is to be an RTOS task.

specifies the rate at which the task should be called, the
maximum time the task shall be allowed to run, and how

67

CCS C Compiler

Relevant Interrupts:
none

Relevant Include Files:
none all functions are
built in

Relevant getenv()
Parameters:
none

Example Code:

#USE
RTOS(timer=0,minor_cyc
le=20ms)

int sem;
#TASK (rate=1s,max=20m
s,queue=5)

void task_name();

rtos_run();
rtos_terminate();

rtos_enable(task_name);
rtos_disable(task_name)

’rtos_msg_send(task_na
me,5);
rtos_yield();

rtos_sigal(sem);

large it's queue should be

/I RTOS will use timer zero, minor cycle will be 20ms

/I Task will run at a rate of once per second

/I with a maximum running time of 20ms and
/[a 5 byte queue

// begins the RTOS

/I ends the RTOS

/l enables the previously declared task.
/I disables the previously declared task

/I places the value 5 in task_names queue.

/l yields control to the RTOS
/I signals that the resource represented by sem is
available.

For more information on the CCS RTOS please

SPI

SPI™ is a fluid standard for 3 or 4 wire, full duplex communications named by Motorola.
Most PIC devices support most common SPI™ modes. CCS provides a support library for
taking advantage of both hardware and software based SPI™ functionality. For software

support, see #USE SPI.

68

Functional Overview

Relevant Functions:

setup_spi(mode) Configure the hardware SPI to the specified mode. The
setup_spi2(mode) mode configures setup_spi2(mode) thing such as master
setup_spi3 (mode) or slave mode, clock speed and clock/data trigger
setup_spi4 (mode) configuration.

Note: for devices with dual SPI interfaces a second function, setup_spi2(), is
provided to configure the second interface.

spi_data_is_in() Returns TRUE if the SPI receive buffer has a byte of data.
spi_data_is_in2()

spi_write(value) Transmits the value over the SPI interface. This will cause
spi_write2(value) the data to be clocked out on the SDO pin.

Performs an SPI transaction, where the value is clocked
out on the SDO pin and data clocked in on the SDI pin is
returned. If you just want to clock in data then you can use
spi_read() without a parameter.

spi_read(value)
spi_read2(value)

Relevant Preprocessor:
None

Relevant Interrupts:
#int_ssp

#int_ssp2 Transaction (read or write) has completed on the indicated

peripheral.

Relevant getenv() Parameters:
SPI Returns TRUE if the device has an SPI peripheral

Example Code:
/lconfigure the device to be a master, data transmitted on H-to-L clock transition
setup_spi(SPI_MASTER | SPI_H_TO_L | SPI_CLK_DIV_16);

spi_write(0x80); /lwrite 0x80 to SPI device

value=spi_read(); /Iread a value from the SPI device

value=spi_read(0x80); [/Iwrite 0x80 to SPI device the same time you are reading a
value.

TimerO

These options lets the user configure and use timerO. It is available on all devices and is
always enabled. The clock/counter is 8-bit on pic16s and 8 or 16 bit on pic18s. It counts

69

CCS C Compiler

up and also provides interrupt on overflow. The options available differ and are listed in

the device header file.

Relevant Functions:

setup_timer_O(mode)

set_timerO(value) or
set_rtcc(value)

value=get_timer0
Relevant Preprocessor:

Relevant Interrupts :
INT_TIMERO or INT_RTCC

Relevant Include Files:
None, all functions built-in

Relevant getenv() parameters:
TIMERO

Example Code:
For PIC18F452

setup_timer_O(RTCC_INTERNAL
|RTCC_DIV_2|RTCC_8_BIT);

set_timer0(0);
time=get_timer0();

Sets the source, prescale etc for timer0
Initializes the timer0 clock/counter. Value may be
a 8 bit or 16 bit depending on the device.

Returns the value of the timer0 clock/counter

None

Interrupt fires when timer0 overflows

Returns 1 if the device has timer0

/Isets the internal clock as source
/land prescale 2. At 20Mhz timerO

/Iwill increment every 0.4us in this
/Isetup and overflows every
//102.4us

/lthis sets timerO0 register to 0
/lthis will read the timerO register
/Ivalue

Timerl

These options lets the user configure and use timerl. The clock/counter is 16-bit on
picl16s and picl8s. It counts up and also provides interrupt on overflow. The options
available differ and are listed in the device header file.

Relevant Functions:

setup_timer_1(mode)
set_timerl(value)
value=get_timerl

Disables or sets the source and prescale for timerl
Initializes the timerl clock/counter
Returns the value of the timerl clock/counter

70

Functional Overview

Relevant Preprocessor:
None

Relevant Interrupts:
INT_TIMER1

Relevant Include Files:
None, all functions built-in

Relevant getenv() parameters:
TIMER1

Example Code:

For PIC18F452
setup_timer_1(T1_DISABLED);
or
setup_timer_1(T1_INTERNAL|T1
_DIV_BY_8);

set_timer1(0);
time=get_timer1();

Interrupt fires when timerl overflows

Returns 1 if the device has timerl

/ldisables timerl

/Isets the internal clock as source

/land prescale as 8. At 20Mhz timerl will increment
/levery 1.6us in this setup and overflows every
//104.896ms

/lthis sets timerl register to 0

/lthis will read the timer1 register value

Timer2

These options lets the user configure and use timer2. The clock/counter is 8-bit on pic16s
and pic18s. It counts up and also provides interrupt on overflow. The options available
differ and are listed in the device header file.

Relevant Functions:

setup_timer_2
(mode,period,postscale)

set_timer2(value)
value=get_timer2

Relevant Preprocessor:
None

Relevant Interrupts:
INT_TIMER2

Disables or sets the prescale, period and a
postscale for timer2

Initializes the timer2 clock/counter

Returns the value of the timer2 clock/counter

Interrupt fires when timer2 overflows

71

CCS C Compiler

Relevant Include Files:
None, all functions built-in

Relevant getenv() parameters:
TIMER2 Returns 1 if the device has timer2

Example Code:
For PIC18F452
setup_timer_2(T2_DISABLED); //disables timer2

or

setup_timer_2(T2_DIV_BY_4,0x //sets the prescale as 4, period as 0xc0 and

c0,2); /Ipostscales as 2.
/IAt 20Mhz timer2 will increment every .8us in this
/Isetup overflows every 154.4us and interrupt every
308.2us

set_timer2(0); /lthis sets timer2 register to 0

time=get_timer2(); /Ithis will read the timerl register value

Timer3

Timer3 is very similar to timerl. So please refer to the Timerl section for more details.

Timer4

Timer4 is very similar to Timer2. So please refer to the Timer2 section for more details.

Timer5

These options lets the user configure and use timer5. The clock/counter is 16-bit and is
available only on 18Fxx31 devices. It counts up and also provides interrupt on overflow.
The options available differ and are listed in the device header file.

Relevant Functions:

setup_timer_5(mode) Disables or sets the source and prescale for imer5
set_timer5(value) Initializes the timer5 clock/counter
value=get_timer5 Returns the value of the timer51 clock/counter

72

Functional Overview

Relevant Preprocessor:
None

Relevant Interrupts :
INT_TIMERS Interrupt fires when timer5 overflows

Relevant Include Files: None, all functions built-in

Relevant getenv() parameters:
TIMERS

Example Code:
For PIC18F4431
setup_timer_5(T5_DISABLED) /[disables timer5

Returns 1 if the device has timer5

or
setup_timer_5(T5_INTERNAL|T5 //sets the internal clock as source and
_DIV_BY_1); llprescale as 1.
/At 20Mhz timer5 will increment every .2us in this
/Isetup and overflows every 13.1072ms
set_timer5(0); /lthis sets timer5 register to 0
time=get_timer5(); /lthis will read the timer5 register value

TimerA

These options lets the user configure and use timerA. It is available on devices with Timer
A hardware. The clock/counter is 8 bit. It counts up and also provides interrupt on
overflow. The options available are listed in the device's header file.

Relevant Functions:

setup_timer_A(mode) Disable or sets the source and prescale for timerA

set_timerA(value) Initializes the timerA clock/counter
value=get_timerA() Returns the value of the timerA clock/counter
Relevant Preprocessor:

None

Relevant Interrupts :
INT_TIMERA Interrupt fires when timerA overflows

Relevant Include Files: None, all functions built-in
Relevant getenv()
parameters:

TIMERA Returns 1 if the device has timerA

73

CCS C Compiler

Example Code:
setup_timer_A(TA_OFF);
or

setup_timer_A
(TA_INTERNAL |
TA_DIV_8);

set_timerA(0);
time=get_timerA();

/ldisable timerA

/Isets the internal clock as source
/land prescale as 8. At 20MHz timerA will increment

/levery 1.6us in this setup and overflows every
//409.6us

[lthis sets timerA register to 0
[Ithis will read the timerA register value

TimerB

These options lets the user configure and use timerB. It is available on devices with

TimerB hardware. The clock/counter is 8 bit. It counts up and also provides interrupt on

overflow. The options available are listed in the device's header file.

Relevant Functions:

setup_timer_B(mode)
set_timerB(value)
value=get_timerB()
Relevant Preprocessor:
None

Relevant Interrupts :
INT_TIMERB

Relevant Include Files:

Relevant getenv()
parameters:

TIMERB

Example Code:
setup_timer_B(TB_OFF);
or

setup_timer_B
(TB_INTERNAL |
TB_DIV_8);

set_timerB(0);
time=get_timerB();

Disable or sets the source and prescale for timerB
Initializes the timerB clock/counter
Returns the value of the timerB clock/counter

Interrupt fires when timerB overflows

None, all functions built-in

Returns 1 if the device has timerB

/ldisable timerB

/Isets the internal clock as source
/land prescale as 8. At 20MHz timerB will increment

/levery 1.6us in this setup and overflows every
/1409.6us

/lthis sets timerB register to 0

/lthis will read the timerB register value

74

Functional Overview

USB

Universal Serial Bus, or USB, is used as a method for peripheral devices to connect to
and talk to a personal computer. CCS provides libraries for interfacing a PIC to PC using
USB by using a PIC with an internal USB peripheral (like the PIC16C765 or the
PIC18F4550 family) or by using any PIC with an external USB peripheral (the National
USBN9603 family).

Relevant Functions:

usb_init() Initializes the USB hardware. Will then wait in an infinite loop
for the USB peripheral to be connected to bus (but that
doesn't mean it has been enumerated by the PC). Will enable
and use the USB interrupt.

The same as usb_init(), but does not wait for the device to be
usb_init_cs() connected to the bus. This i§ useful if your device_ is not bus
- = powered and can operate without a USB connection.

usb_task() If you use connection sense, and the usb_init_cs() for
initialization, then you must periodically call this function to
keep an eye on the connection sense pin. When the PIC is
connected to the BUS, this function will then perpare the USB
peripheral. When the PIC is disconnected from the BUS, it will
reset the USB stack and peripheral. Will enable and use the
USB interrupt.

Note: In your application you must define USB_CON_SENSE_PIN to the
connection sense pin.

usb_detach() Removes the PIC from the bus. Will be called automatically by
usb_task() if connection is lost, but can be called manually by
the user.

Attaches the PIC to the bus. Will be called automatically by

usb,_attach() usb_task() if connection is made, but can be called manually
by the user.

usb_attached() If using connection sense pin (USB_CON_SENSE_PIN),
returns TRUE if that pin is high. Else will always return TRUE.

Returns TRUE if the device has been enumerated by the PC.
usb_enumerated() _If the device has_ been enumerated by the PC, thaF means it is

in normal operation mode and you can send/receive packets.
usb_put_packet Places the packet of data into the specified endpoint buffer.
(endpoint, data, len, Returns TRUE if success, FALSE if the buffer is still full with
tgl) the last packet.

75

CCS C Compiler

usb_puts
(endpoint, data, len,
timeout)

usb_kbhit(endpoint)

ush_get_packet
(endpoint, ptr, max)

usb_gets(endpoint,

ptr,
max, timeout)

Relevant CDC
Functions:

Sends the following data to the specified endpoint. usb_puts()
differs from usb_put_packet() in that it will send multi packet
messages if the data will not fit into one packet.

Returns TRUE if the specified endpoint has data in it's receive
buffer

Reads up to max bytes from the specified endpoint buffer and
saves it to the pointer ptr. Returns the number of bytes saved
to ptr.

Reads a message from the specified endpoint. The difference
usb_get_packet() and usb_gets() is that usb_gets() will wait
until a full message has received, which a message may
contain more than one packet. Returns the number of bytes
received.

A CDC USB device will emulate an RS-232 device, and will appear on your PC as a
COM port. The follow functions provide you this virtual RS-232/serial interface

Note: When using the CDC library, you can use the same functions above, but do
not use the packet related function such as
usb_kbhit(), usb_get_packet(), etc.

usb_cdc_kbhit()

usb_cdc_getc()

usb_cdc_putc(c)

usb_cdc_putc_fast(c)

usb_cdc_puts(*str)

The same as kbhit(), returns TRUE if there is 1 or more
character in the
receive buffer.

The same as getc(), reads and returns a character from the
receive buffer. If there is no data in the receive buffer it will
wait indefinitely until there a character has been received.

The same as putc(), sends a character. It actually puts a
character into the transmit buffer, and if the transmit buffer is
full will wait indefinitely until there is space for the character.

The same as usb_cdc_putc(), but will not wait indefinitely until
there is space for the character in the transmit buffer. In that
situation the character is lost.

Sends a character string (null terminated) to the USB CDC
port. Will return FALSE if the buffer is busy, TRUE if buffer is
string was put into buffer for sending. Entire string must fit into
endpoint, if string is longer than endpoint buffer then excess
characters will be ignored.

76

Functional Overview

usb_cdc_putready()
Relevant
Preporcessor:

None

Relevant Interrupts:
#int_usb

Relevant Include
files:

pic_usb.h

picl8 usb.h

usbn960x.h

usb.h

usbh.c

usb_cdc.h

Returns TRUE if there is space in the transmit buffer for
another character.

A USB event has happened, and requires application
intervention. The USB library that CCS provides handles this
interrupt automatically.

Hardware layer driver for the PIC16C765 family PICmicro
controllers with an internal USB peripheral.

Hardware layer driver for the PIC18F4550 family PICmicro
controllers with an internal USB peripheral.

Hardware layer driver for the National USBN9603/USBN9604
external USB peripheral. You can use this external peripheral
to add USB to any microcontroller.

Common definitions and prototypes used by the USB driver

The USB stack, which handles the USB interrupt and USB
Setup Requests on Endpoint 0.

A driver that takes the previous include files to make a CDC
USB device, which emulates an RS232 legacy device and
shows up as a COM port in the MS Windows device manager.

Relevant getenv() Parameters:

USB

Example Code:

Returns TRUE if the PICmicro controller has an integrated
internal USB peripheral.

Due to the complexity of USB example code will not fit here. But you can find the
following examples installed with your CCS C Compiler:

ex_usb_hid.c
ex_usb_mouse.c

ex_usb_kbmouse.c

A simple HID device
A HID Mouse, when connected to your PC the mouse cursor
will go in circles.

An example of how to create a USB device with multiple
interfaces by creating a keyboard and mouse in one device.

77

CCS C Compiler

ex_usb_kbmouse2.c An example of how to use multiple HID report Ids to transmit
more than one type of HID packet, as demonstrated by a
keyboard and mouse on one device.

ex_usb_scope.c

A vendor-specific class using bulk transfers is demonstrated.

ex_usb_serial.c The CDC virtual RS232 library is demonstrated with this
RS232 < - > USB example.

Another CDC virtual RS232 library example, this time a port of
ex_usb_serial2.c the ex_intee.c example to use USB instead of RS232.

Voltage Reference

These functions configure the votlage reference module. These are available only in the

supported chips.

Relevant Functions:

setup_vref(mode | value)

Relevant Preprocesser:
Relevant Interrupts:
Relevant Include Files:

Relevant getenv()
parameters:
VREF

Example code: for
PIC12F675

Enables and sets up the internal voltage reference value.
Constants are defined in the device's .h file.

None

None

None, all functions built-in

Returns 1 if the device has VREF

#INT COMP //comparator interrupt handler
void isr () {

safe conditions = FALSE;

printf ("WARNING!!!! Voltage level is
above 3.6V. \r\n");
}

setup comparator (Al VR OUT ON A2)//sets 2
comparators (Al and VR and A2 as output)
{

setup_vref (VREF HIGH | 15);//sets
3.6(vdd * value/32 + vdd/4) if vdd is 5.0V

78

Functional Overview

enable interrupts (INT COMP); // enable
the comparator interrupt

enable interrupts (GLOBAL); //enable
global interrupts
}

WDT or Watch Dog Timer

Different chips provide different options to enable/disable or configure the WDT.

Relevant Functions:

setup_wdt() Enables/disables the wdt or sets the prescalar.
Restarts the wdt, if wdt is enables this must be periodically
restart_wdt() called to prevent a timeout reset.

For PCB/PCM chips it is enabled/disabled using WDT or NOWDT fuses whereas
on PCH device it is done using the setup_wdt function.

The timeout time for PCB/PCM chips are set using the setup_wdt function and on
PCH using fuses like WDT16, WDT256 etc.

RESTART_WDT when specified in #USE DELAY, #USE I12C and #USE RS232
statements like this #USE DELAY(clock=20000000, restart_wdt) will cause the wdt
to restart if it times out during the delay or I2C_READ or GETC.

Relevant Preprocessor:
#FUSES WDT/NOWDT Enabled/Disables wdt in PCB/PCM devices
#FUSES WDT16 Sets ups the timeout time in PCH devices

Relevant Interrupts: None
Relevant Include Files: None, all functions built-in
Relevant getenv()

parameters: None
Example Code: for #fuses wdt setup wdt (WDT_ 2304MS) ;
PIC16F877 while (true) {
restart wdt();
perform activity();
{
#fuse WDT1

setup wdt (WDT ON) ;
while (true) {
restart wdt();

For PIC18F452

79

CCS C Compiler

perform activity():

}

interrupt_enabled()

This function checks the interrupt enabled flag for the specified
interrupt and returns TRUE if set.

Syntax interrupt_enabled(interrupt);

Parameters interrupt- constant specifying the interrupt

Returns Boolean value

Function The function checks the interrupt enable flag of the
specified interrupt and returns TRUE when set.

Availability Devices with interrupts

Requires Interrupt constants defined in the device's .h file.

if(interrupt_enabled(INT_RDA))

Examples disable_interrupt(INT_RDA);
Example Files None

DISABLE INTERRUPTS(), , Interrupts Overview,
Also see CLEAR_INTERRUPT(),

ENABLE _INTERRUPTS(), INTERRUPT ACTIVE()

Stream 1/O

Syntax: #include <ios.h>is required to use any of the ios identifiers.

output:
stream << variable_or_constant_or_manipulator ;

one or more repeats
stream may be the name specified in the #use RS232 stream= option
or for the default stream use cout.
Output:
stream may also be the name of a char array. In this case the data is
written to the array with a 0 terminator.

stream may also be the name of a function that accepts a single char
parameter. In this case the function is called for each character to be output.

80

Functional Overview

Examples:

Input:

variables/constants: May be any integer, char, float or fixed type. Char
arrays are
output as strings and all other types are output as an address of the variable.

manipulators:

hex -Hex format numbers

dec- Decimal format numbers (default)

setprecision(x) -Set number of places after the decimal point
setw(x) -Set total number of characters output for numbers
boolalpha- Output intl as true and false

noboolalpha -Output intl as 1 and 0 (default)

fixed Floats- in decimal format (default)

scientific Floats- use E notation

iosdefault- All manipulators to default settings

endl -Output CR/LF

ends- Outputs a null (\0O00")

cout << "Value is " << hex << data << end|;

cout << "Price is $" << setw(4) << setprecision(2) << cost << endl;
Icdputc << '\f' << setw(3) << count<<" "<<min<<" "<<max;
stringl << setprecision(1) << sum / count;

string2 << x <<',' <<y;

stream >> variable_or_constant_or_manipulator ;

one or more repeats
stream may be the name specified in the #use RS232 stream= option
or for the default stream use cin.

stream may also be the name of a char array. In this case the data is
read from the array up to the O terminator.

stream may also be the name of a function that returns a single char and has
no parameters. In this case the function is called for each character to be
input.

Make sure the function returns a \r to terminate the input statement.

variables/constants: May be any integer, char, float or fixed type. Char arrays
are

input as strings. Floats may use the E format.

Reading of each item terminates with any character not valid for the type.
Usually

items are separated by spaces. The termination character is discarded. At
the end

of any stream input statement characters are read until a return (\r) is read.
No

termination character is read for a single char input.

81

CCS C Compiler

Examples:

manipulators:

hex -Hex format numbers

dec- Decimal format numbers (default)

noecho- Suppress echoing

strspace- Allow spaces to be input into strings

nostrspace- Spaces terminate string entry (default)

iosdefault -All manipulators to default settings

cout << "Enter number: ";

cin >> value;

cout << "Enter title: ";

cin >> strspace >> title;

cin >> datali].recordid >> data]i].xpos >> datal[i].ypos >> datali].sample ;

stringl >> data;

Icdputc << "\fEnter count";

Icdputc << keypadgetc >> count; // read from keypad, echo to lcd
/I This syntax only works with
/I user defined functions.

82

PREPROCESSOR

PRE-PROCESSOR DIRECTORY

Pre-processor directives all begin with a # and are followed by a specific

command. Syntax is dependent on the command. Many commands do not allow other
syntactical elements on the remainder of the line. A table of commands and a description
is listed on the previous page.

Several of the pre-processor directives are extensions to standard C. C provides a pre-
processor directive that compilers will accept and ignore or act upon the following

data. This implementation will allow any pre-processor directives to begin with
#PRAGMA. To be compatible with other compilers, this may be used before non-standard
features.

Examples:

Both of the following are valid
#INLINE

#PRAGMA INLINE

__address___

A predefined symbol __address__ may be used to
indicate a type that must hold a program memory
address.

For example:
____address__ testa = 0x1000 //will allocate 16 bits for
test a and
//initialize to 0x1000

_attribute_x
Syntax: __attribute__ x
Elements: x is the attribute you want to apply. Valid values for x are as follows:

((packed))

83

CCS C Compiler

Purpose
Examples:

Example
Files:

By default each element in a struct or union are padded to be evenly
spaced by the size of 'int'. This is to prevent an address fault when
accessing an element of struct. See the following example:
struct
{
int8 a;
intl6 b;
} test;

On architectures where 'int' is 16bit (such as dsPIC or PIC24
PICmicrocontrollers), ‘test' would take 4 bytes even though it is comprised
of3 bytes. By applying the 'packed' attribute to this struct then it would take
3 bytes as originally intended:
struct __attribute__((packed))
{

int8 a;

intl6 b;

} test;

Care should be taken by the user when accessing individual elements of a
packed struct — creating a pointer to 'b' in 'test' and attempting to
dereference that pointer would cause an address fault. Any attempts to
read/write 'b' should be done in context of ‘test' so the compiler knows it is
packed:

test.b = 5;

((aligned(y))
By default the compiler will alocate a variable in the first free memory

location. The aligned attribute will force the compiler to allocate a location
for the specified variable at a location that is modulus of the y parameter.
For example:
int8 array[256] __attribute__((aligned(0x1000)));
This will tell the compiler to try to place 'array' at either 0x0, 0x1000,
0x2000, 0x3000, 0x4000, etc.
To alter some specifics as to how the compiler operates
struct __attribute__ ((packed))
{
int8 a;
int8 b;
} test;
int8 array[256] __attribute__ ((aligned(0x1000)));

None

84

PreProcessor

#asm #endasm #asm asis
Syntax: #ASM or #ASM ASIS code #ENDASM
Elements: code is a list of assembly language instructions

int find parity(int data) {

int

count;

fasm

MOV
MOV
CLR

#0x08, WO
WO, count
wo

loop:

XOR
Examples: RRC
DEC
BRA
MOV
ADD
MOV
MOV

.B data, W0
data, WO
count, F

NZ, loop
#0x01,WO0
count, F
count, WO
W0. RETURN

#endasm

}

Example FFT.c
Files:

Also See: None

12 Bit and 14 Bit

ADDWEF f,d
CLRF f
COMF f,d
DECFSZ f,d
INCFSZ f,d
MOVF f,d
MOVPLW
NOP

RRF f,d
SWAPF f,d
BCF f,b

ANDWE f,d
CLRW
DECF f,d
INCF f,d
IORWEF f,d
MOVPHW
MOVWE f
RLF f,d
SUBWEF f,d
XORWEF f,d
BSF f,b

85

CCS C Compiler

BTFSC f,b BTFSS f,b
ANDLW k CALL k
CLRWDT GOTO k
IORLW k MOVLW k
RETLW k SLEEP
XORLW OPTION
TRIS k
14 Bit
ADDLW k
SUBLW k
RETFIE
RETURN
f may be a constant (file number) or a simple
variable
d may be a constant (0 or 1) or W or F
fb may be a file (as above) and a constant (0-7) or
’ it may be just a bit variable reference.
k may be a constant expression

Note that all expressions and comments are in C like syntax.

PIC 18

ADDWEF fd ADDWFC f.d ANDWF f.d
CLRF f COMF f.d CPFSEQ f
CPESGT f CPFSLT f DECF fd
DECFSZ fd DCFSNZ f,d INCF fd
INFSNZ f,d IORWF f,d MOVF fd
MOVFF fs,d MOVWF f MULWF f
NEGF f RLCF f,d RLNCF fd
RRCF fd RRNCF f.d SETF f
SUBFWB fd SUBWF f.d SUBWFB f.d
SWAPF fd TSTFSZ f XORWF fd
BCF f,b BSF f,b BTFSC f,b
BTFSS f,b BTG f,d BC n
BN n BNC n BNN n
BNOV n BNZ n BOV n
BRA n BZ n CALL n,s
CLRWDT - DAW - GOTO n
NOP = NOP = POP =
PUSH - RCALL n RESET -
RETFIE S RETLW k RETURN s
SLEEP - ADDLW k ANDLW k
IORLW k LFSR f,k MOVLB k
MOVLW k MULLW k RETLW k
SUBLW k XORLW k TBLRD *
TBLRD *+ TBLRD *- TBLRD +*

86

PreProcessor

TBLWT * TBLWT aE TBLWT s
TBLWT +*

The compiler will set the access bit depending on the value of the file register.

If there is just a variable identifier in the #asm block then the compiler inserts an & before
it. And if it is an expression it must be a valid C expression that evaluates to a constant
(no & here). In C an un-subscripted array name is a pointer and a constant (no need for
&).

#bit

Syntax: #BIT id =x.y

Elements: id is a valid C identifier,
X is a constant or a C variable,
y is a constant 0-7

A new C variable (one bit) is created and is placed in memory at byte x and bit
y. This is useful to gain access in C directly to a bit in the processors special

Purpose: function register map. It may also be used to easily access a bit of a standard
C variable.
Examples: #bit TOIF = O0x b.2

T1IF = 0; // Clear Timer 0 interrupt flag

int result;
#bit result odd = result.0

if (result odd)

Example

Files: ex_glint.c

Also See: #BYTE, #RESERVE, #LOCATE, #WORD
buildcount

87

../HelpFile/CCSC/javascript:shortcutlink.click()

CCS C Compiler

Only defined if Options>Project Options>Global Defines has global defines enabled.

This id resolves to a number representing the number of successful builds of the project.

#build

Syntax: #BUILD(segment = address)
#BUILD(segment = address, segment = address)
#BUILD(segment = start:end)
#BUILD(segment = start: end, segment = start: end)
#BUILD(nosleep)

Elements: segment is one of the following memory segments which may be assigned a
location: MEMORY, RESET, or INTERRUPT

address is a ROM location memory address. Start and end are used to
specify a range in memory to be used.

start is the first ROM location and end is the last ROM location to be used.

nosleep is used to prevent the compiler from inserting a sleep at the end of
main()

Bootload produces a bootloader-friendly hex file (in order, full block size).

NOSLEEP_LOCK is used instead of A sleep at the end of a main A infinite
loop.

PIC18XXX devices with external ROM or PIC18XXX devices with no internal
ROM can direct the compiler to utilize the ROM. When linking multiple

Purpose: compilation units, this directive must appear exactly the same in each
compilation unit.

Examples: #build (memory=0x20000:0x2FFFF) //Assigns memory space

#build (reset=0x200, interrupt=0x208) //Assigns start
//location
//of reset and
//interrupt
//vectors

#build (reset=0x200:0x207, interrupt=0x208:0x2ff)
//Assign limited space
//for reset and
//interrupt vectors.

#build (memory=0x20000:0x2FFFF) //Assigns memory space
Example None
Files:
Also See: #LOCATE, #RESERVE, #ROM, #ORG

88

#byte

PreProcessor

Syntax: #byte id = x
Elements: id is a valid C identifier,
X is a C variable or a constant
If the id is already known as a C variable then this will locate the variable at
address x. In this case the variable type does not change from the original
definition. If the id is not known a new C variable is created and placed at
address x with the type int (8 bit)
Purpose:
Warning: In both cases memory at x is not exclusive to this variable. Other
variables may be located at the same location. In fact when x is a variable,
then id and x share the same memory location.
Examples: #byte status = 3
#byte b port = 6
struct {
short int r w;
short int c d;
int unused : 2;
int data : 4 ; } a port;
#byte a port = 5
é;éort.c_d =1;
Example ex_glint.c
Files:
Also See: #bit, #locate, #reserve, #word, Named Reqisters, Type Specifiers, Type
Qualifiers, Enumerated Types, Structures & Unions, Typedef
#case
Syntax: #CASE
Elements: None
Will cause the compiler to be case sensitive. By default the compiler is case
Purpose: insensitive. When linking multiple compilation units, this directive must appear

exactly the same in each compilation unit.

89

../HelpFile/CCSC/javascript:shortcutlink.click()

CCS C Compiler

Warning: Not all the CCS example programs, headers and drivers have been
tested with case sensitivity turned on.

Examples: #case
int STATUS;
void func () {
int status;
éfATUS = status; // Copy local status to
//global
}
Example ex_cust.c
Files:
Also See: None
date
Syntax: _ DATE__
Elements: None
This pre-processor identifier is replaced at compile time with the date of the
Purpose: compile in the form: "31-JAN-03"
Examples: printf ("Software was compiled on ");
printf(_ DATE);
Example None
Files:
Also See: None

#define

Syntax:

#define id text

or

#define id(x,y...) text

90

../HelpFile/CCSC/javascript:shortcutlink.click()

PreProcessor

Elements:

Purpose:

Examples:

Example
Files:
Also See:

id is a preprocessor identifier, text is any text, x,y is a list of local preprocessor
identifiers, and in this form there may be one or more identifiers separated by
commas.

Used to provide a simple string replacement of the ID with the given text from
this point of the program and on.

In the second form (a C macro) the local identifiers are matched up with
similar identifiers in the text and they are replaced with text passed to the
macro where it is used.

If the text contains a string of the form #idx then the result upon evaluation will
be the parameter id concatenated with the string x.

If the text contains a string of the form #idx#idy then parameter idx is
concatenated with parameter idy forming a new identifier.

Within the define text two special operators are supported:
#x is the stringize operator resulting in "x"
x#iy is the concatination operator resulting in xy

The varadic macro syntax is supported where the last parameter is specified
as ... and the local identifier used is __va_args__. In this case, all remaining
arguments are combined with the commas.

#define BITS 8

a=a+BITS; //same as a=a+8;

#define hi (x) (x<<4)

a=hi (a) ; //same as a=(a<<4) ;

#define isequal (a,b) (primary ##a[bl==backup ##a[b])
// usage iseaqual (names,5) 1is the same as

// (primary names[5]==backup names[5])
#define str(s) #s
#define part (device) #include str(device##.h)
// usage part (16F887) is the same as
// #include "16F887.h"
#define DBG(...) fprintf (debug, VA ARGS)

ex_stwt.c, ex_macro.c

#UNDEF, #IEDEF, #IENDEF

91

../HelpFile/CCSC/javascript:shortcutlink2.click()
../HelpFile/CCSC/javascript:shortcutlink2.click()

CCS C Compiler

definedinc
Syntax: value = definedinc(variable);
Parameters: variable is the name of the variable, function, or type to be checked.
A C status for the type of id entered as follows:
0 — not known
1 — typedef or enum
2 — struct or union type
3 — typemod qualifier
Returns: 4 — defined function
5 — function prototype
6 — compiler built-in function
7 — local variable
8 — global variable
Function: This function checks the type of the variable or function being passed
in and returns a specific C status based on the type.
Availability: All devices
Requires: None.
intx,y=0;
Examples: y = definedinc(x); /'y will return 7 — x is a local variable
Example Files: None
Also See: None
#device
Syntax: #DEVICE chip options
#DEVICE Compilation mode selection
Elements: Chip Options-

chip is the name of a specific processor (like: PIC16C74), To get a
current list of supported devices:

START | RUN | CCSC +Q

92

PreProcessor

Options are qualifiers to the standard operation of the device. Valid

options are:

*=5 Use 5 bit pointers (for all parts)

*=8 Use 8 bit pointers (14 and 16 bit
parts)

*=16 Use 16 bit pointers (for 14 bit parts)

ADC=x Where x is the number of bits
read_adc() should return
Generates code compatible with

ICD=TRUE Microchips ICD debugging
hardware.

ICD=n For chips with multiple ICSP ports

WRITE_EEPROM=ASYNC

WRITE_EEPROM = NOINT

HIGH_INTS=TRUE
Y%f=.

OVERLOAD=KEYWORD

OVERLOAD=AUTO

PASS_STRINGS=IN_RAM

CONST=READ_ONLY

CONST=ROM

NESTED_INTERRUPTS=TR
UE

specify the port number being
used. The defaultis 1.

Prevents WRITE_EEPROM from
hanging while writing is taking
place. When used, do not write to
EEPROM from both ISR and
outside ISR.

Allows interrupts to occur while the
write_eeprom() operations is
polling the done bit to check if the
write operations has completed.
Can be used as long as no
EEPROM operations are
performed during an ISR.

Use this option for high/low priority
interrupts on the PIC® 18.

No 0 before a decimal pint on %f
numbers less than 1.

Overloading of functions is now
supported. Requires the use of the
keyword for overloading.

Default mode for overloading.

A new way to pass constant strings
to a function by first copying the
string to RAM and then passing a
pointer to RAM to the function.
Uses the ANSI keyword CONST
definition, making CONST
variables read only, rather than
located in program memory.

Uses the CCS compiler traditional
keyword CONST definition, making
CONST variables located in
program memory.

Enables interrupt nesting for
PIC24, dsPIC30, and dsPIC33

93

CCS C Compiler

Purpose:

NORETFIE

NO_DIGITAL_INIT

devices. Allows higher priority
interrupts to interrupt lower priority
interrupts.

ISR functions (preceeded by a
#int_xxx) will use a RETURN
opcode instead of the RETFIE
opcode. This is not a commonly
used option; used rarely in cases
where the user is writing their own
ISR handler.

Normally the compiler sets all I/O
pins to digital and turns off the
comparator. This option prevents
that action.

Both chip and options are optional, so multiple #DEVICE lines may be
used to fully define the device. Be warned that a #DEVICE with a chip
identifier, will clear all previous #DEVICE and #FUSE settings.

Compilation mode selection-

The #DEVICE directive supports compilation mode selection. The
valid keywords are CCS2, CCS3, CCS4 and ANSI. The default mode
is CCS4. For the CCS4 and ANSI mode, the compiler uses the default
fuse settings NOLVP, PUT for chips with these fuses. The NOWDT
fuse is default if no call is made to restart_wdt().

CCS4

This is the default compilation mode. The pc
mode for PCM and PCH is set to *=16 if the
over OFF.

ANSI

CCS2 CCSs3

CCS2 only

Default data type is SIGNED all other modes de
UNSIGNED. Compilation is case sensitive, all (
case insensitive. Pointer size is set to *=16 if th
over OFF.

varl6é = NegConst8 is compiled as: varl6 = Neg
sign extension) Pointer size is set to *=8 for PC
*=5 for PCB . The overload keyword is required

The default #DEVICE ADC is set to the resolut
other modes default to 8.

onebit = eightbits is compiled as onebit = (eight
All other modes compile as: onebit = (eightbits «

Chip Options -Defines the target processor. Every program must
have exactly one #DEVICE with a chip. When linking multiple
compilation units, this directive must appear exactly the same in each

compilation unit.

94

PreProcessor

Examples:

Example Files:

Compilation mode selection - The compilation mode selection
allows existing code to be compiled without encountering errors
created by compiler compliance. As CCS discovers discrepancies in
the way expressions are evaluated according to ANSI, the change will
generally be made only to the ANSI mode and the next major CCS
release.

Chip Options-

#device PIC16C74

#device PIC16C67 *=16

#device *=16 ICD=TRUE

#device PIC16F877 *=16 ADC=10

#device %$f=.

printf ("$£f",.5); //will print .5, without the directive it
will print 0.5

Compilation mode selection-
#device CCS2 // This will set the ADC to the resolution
of the part

ex_mxram.c , ex_icd.c, 16c74.h,

Also See: read_adc()
device
Syntax: _ DEVICE__
Elements: None
This pre-processor identifier is defined by the compiler with the base
number of the current device (from a #DEVICE). The base number is
Purpose: usually the number after the C in the part number. For example the
PIC16C622 has a base number of 622.
Examples: #if device ==71
SETUP_ADC_PORTS (ALL DIGITAL);
ffendif
Example Files: None
Also See: #DEVICE

95

../HelpFile/CCSC/javascript:shortcutlink.click()
../HelpFile/CCSC/javascript:shortcutlink2.click()
../HelpFile/CCSC/javascript:shortcutlink3.click()

CCS C Compiler

#if expr #else #elif #endif

Syntax: #if expr
code
#elif expr //Optional, any number may be used
code
#else //Optiona
code
#endif

Elements: expr is an expression with constants, standard operators and/or
preprocessor identifiers. Code is any standard ¢ source code.

The pre-processor evaluates the constant expression and if it is non-
zero will process the lines up to the optional #ELSE or the #ENDIF.

Note: you may NOT use C variables in the #IF. Only preprocessor
Purpose: identifiers created via #define can be used.

The preprocessor expression DEFINED(id) may be used to return 1 if

the id is defined and O if it is not.

== and != operators now accept a constant string as both operands.

This allows for compile time comparisons and can be used with

GETENV() when it returns a string result.

Examples: #if MAX VALUE > 255
long value;
#else
int value;
#endif
#if getenv (“"DEVICE”)=="PIC16F877"
//do something special for the PIC16F877
#endif
Example Files: ex exiee.c
Also See: #IFDEF, #IENDEF, getenv()
#error
Syntax: #ERROR text

#ERROR / warning text

96

../HelpFile/CCSC/javascript:shortcutlink.click()

PreProcessor

#ERROR / information text

Elements:

Purpose:

Examples:

Example Files:
Also See:

text is optional and may be any text

Forces the compiler to generate an error at the location this directive
appears in the file. The text may include macros that will be
expanded for the display. This may be used to see the macro
expansion. The command may also be used to alert the user to an
invalid compile time situation.

#if BUFFER SIZE>16

#error Buffer size is too large
#endif

#error Macro test: min(x,y)

€exX _psp.c

#WARNING

#export (options)

Syntax:

#EXPORT (options)

Elements:

FILE=filname

The filename which will be generated upon compile. If not given, the
filname will be the name of the file you are compiling, with a .0 or .hex
extension (depending on output format).

ONLY=symbol+symbol+.....+symbol

Only the listed symbols will be visible to modules that import or link
this relocatable object file. If neither ONLY or EXCEPT is used, all
symbols are exported.

EXCEPT=symbol+symbol+.....+symbol

All symbols except the listed symbols will be visible to modules that
import or link this relocatable object file. If neither ONLY or EXCEPT
is used, all symbols are exported.

RELOCATABLE

CCS relocatable object file format. Must be imported or linked before
loading into a PIC. This is the default format when the #EXPORT is
used.

HEX

97

../HelpFile/CCSC/javascript:shortcutlink.click()

CCS C Compiler

Purpose:

Examples:

Example Files:

See Also:

Intel HEX file format. Ready to be loaded into a PIC. This is the
default format when no #EXPORT is used.

RANGE=start:stop
Only addresses in this range are included in the hex file.

OFFSET=address
Hex file address starts at this address (0 by default)

OoDD
Only odd bytes place in hex file.

EVEN
Only even bytes placed in hex file.

This directive will tell the compiler to either generate a relocatable
object file or a stand-alone HEX binary. A relocatable object file must
be linked into your application, while a stand-alone HEX binary can be
programmed directly into the PIC.

The command line compiler and the PCW IDE Project Manager can
also be used to compile/link/build modules and/or projects.

Multiple #EXPORT directives may be used to generate multiple hex
files. this may be used for 8722 like devices with external memory.

#EXPORT (RELOCATABLE, ONLY=TimerTask)
void TimerFuncl (void) { /* some code */ }
void TimerFunc?2 (void) { /* some code */ }
void TimerFunc3 (void) { /* some code */ }
void TimerTask (void)
{
TimerFuncl () ;
TimerFunc?2 () ;
TimerFunc3 () ;
}
/*
This source will be compiled into a relocatable object,
but the object this is being linked to can only see
TimerTask ()
=/

None

#IMPORT, #MODULE, Invoking the Command Line Compiler, Multiple
Compilation Unit

98

PreProcessor

file
Syntax: __FILE__
Elements: None
The pre-processor identifier is replaced at compile time with the file
Purpose: path and the filename of the file being compiled.
Examples: if (index>MAX ENTRIES)
printf ("Too many entries, source file: "
_ FILE " at line " LINE _ "\r\n");
Example Files: asserth
Also See: line
filename
Syntax: _ _FILENAME__
Elements: None
The pre-processor identifier is replaced at compile time with the
Purpose: filename of the file being compiled.
Examples: if (index>MAX ENTRIES)
printf ("Too many entries, source file: "
__ FILENAME " at line " LINE _ "\r\n");
Example Files: None
Also See: line
#fill_rom
Syntax: #fill_rom value

99

../HelpFile/CCSC/javascript:shortcutlink.click()

CCS C Compiler

Elements: value is a constant 16-bit value
This directive specifies the data to be used to fill unused ROM

= . locations. When linking multiple compilation units, this directive must

urpose: . S .

appear exactly the same in each compilation unit.

Examples: #£ill rom 0x36

Example Files: None

Also See: #ROM

#fuses

Syntax: #FUSES options

Elements: options vary depending on the device. A list of all valid options has
been put at the top of each devices .h file in a comment for reference.
The PCW device edit utility can modify a particular devices fuses. The
PCW pull down menu VIEW | Valid fuses will show all fuses with their
descriptions.
Some common options are:
e LP, XT, HS, RC
e WDT, NOWDT
e PROTECT, NOPROTECT
e PUT, NOPUT (Power Up Timer)
e BROWNOUT, NOBROWNOUT
This directive defines what fuses should be set in the part when it is
programmed. This directive does not affect the compilation; however,
the information is put in the output files. If the fuses need to be in
Parallax format, add a PAR option. SWAP has the special function of
swapping (from the Microchip standard) the high and low BYTES of
non-program data in the Hex file. This is required for some device

Purpose: programmers.

Some fuses are set by the compiler based on other compiler
directives. For example, the oscillator fuses are set up by the #USE
delay directive. The debug, No debug and ICSPN Fuses are set by
the #DEVICE ICD=directive.

Some processors allow different levels for certain fuses. To access

100

PreProcessor

these levels, assign a value to the fuse. For example, on the 18F452,
the fuse PROTECT=6 would place the value 6 into CONFIG5L,
protecting code blocks 0 and 3.

When linking multiple compilation units be aware this directive applies
to the final object file. Later files in the import list may reverse settings
in previous files.

To eliminate all fuses in the output files use:
#FUSES none

To manually set the fuses in the output files use:
#FUSES 1 = 0xC200 // sets config word 1 to 0xC200

Examples: #fuses HS,NOWDT

Example Files: e

Also See: None

#hexcomment

Syntax: #HEXCOMMENT text comment for the top of the hex file
#HEXCOMMENT\ text comment for the end of the hex file

Elements: None
Puts a comment in the hex file

Purpose: Some programmers (MPLAB in particular) do not like comments at the
top of the hex file.

Examples: #HEXCOMMENT Version 3.1 - requires 20MHz crystal

Example Files:

Also See:

None

None

101

../HelpFile/CCSC/javascript:shortcutlink.click()

CCS C Compiler

#id

Syntax:

#ID number 16

#1D number, number, number, number
#1D "filename"

#|D CHECKSUM

Elements:

Purpose:

Examples:

Example Files:
Also See:

Number 16 is a 16 bit number, number is a 4 bit number, filename is
any valid PC filename and checksum is a keyword.

This directive defines the ID word to be programmed into the
part. This directive does not affect the compilation but the information
is put in the output file.

The first syntax will take a 16 -bit number and put one nibble in each of
the four ID words in the traditional manner. The second syntax
specifies the exact value to be used in each of the four ID words .

When a filename is specified the ID is read from the file. The format
must be simple text with a CR/LF at the end. The keyword
CHECKSUM indicates the device checksum should be saved as the
ID.

#id 0x1234
#id "serial.num"
#id CHECKSUM

ex_cust.c

None

#ifdef

#ifndef

#else #elif #endif

Syntax:

#IFDEF id
code
#ELIF
code
#ELSE
code
#ENDIF

#IFNDEF id

102

../HelpFile/CCSC/javascript:shortcutlink.click()

PreProcessor

code
#ELIF

code
#ELSE

code
#ENDIF

Elements:

Purpose:

Examples:

Example Files:
Also See:

id is a preprocessor identifier, code is valid C source code.

This directive acts much like the #IF except that the preprocessor
simply checks to see if the specified ID is known to the preprocessor
(created with a #DEFINE). #IFDEF checks to see if defined and
#IFNDEF checks to see if it is not defined.

#define debug // Comment line out for no debug
#ifdef DEBUG

printf ("debug point a");
#endif

ex_sqw.c
IF

#ignore_warnings

Syntax:

#ignore_warnings ALL
#IGNORE_WARNINGS NONE
#IGNORE_WARNINGS warnings

Elements:

Purpose:

Examples:

Example Files:

warnings is one or more warning numbers separated by commas

This function will suppress warning messages from the compiler. ALL
indicates no warning will be generated. NONE indicates all warnings
will be generated. If numbers are listed then those warnings are
suppressed.

#ignore warnings 203
while (TRUE) {

#ignore warnings NONE

None

103

../HelpFile/CCSC/javascript:shortcutlink.click()

CCS C Compiler

Also See:

Warning messages

#import (options)

Syntax: #IMPORT (options)
Elements: FILE=filname
The filename of the object you want to link with this compilation.
ONLY=symbol+symbol+.....+symbol
Only the listed symbols will imported from the specified relocatable
object file. If neither ONLY or EXCEPT is used, all symbols are
imported.
EXCEPT=symbol+symbol+.....+symbol
The listed symbols will not be imported from the specified relocatable
object file. If neither ONLY or EXCEPT is used, all symbols are
imported.
RELOCATABLE
CCS relocatable object file format. This is the default format when the
#IMPORT is used.
COFF
COFF file format from MPASM, C18 or C30.
HEX
Imported data is straight hex data.
RANGE=start:stop
Only addresses in this range are read from the hex file.
LOCATION=id
The identifier is made a constant with the start address of the imported
data.
SIZE=id
The identifier is made a constant with the size of the imported data.
This directive will tell the compiler to include (link) a relocatable object
Purpose: with this unit during compilation. Normally all global symbols from the

specified file will be linked, but the EXCEPT and ONLY options can
prevent certain symbols from being linked.

104

PreProcessor

Examples:

Example Files:

The command line compiler and the PCW IDE Project Manager can
also be used to compile/link/build modules and/or projects.

#IMPORT (FILE=timer.o, ONLY=TimerTask)
void main (void)
{

while (TRUE)

TimerTask() ;

}
/*
timer.o is linked with this compilation, but only
TimerTask() is visible in scope from this object.

*/

None

See Also: #EXPORT, #MODULE, Invoking the Command Line Compiler,
Multiple Compilation Unit

#include

Syntax: #INCLUDE <filename>

or

#INCLUDE "filename"

Elements: filename is a valid PC filename. It may include normal drive and path
information. A file with the extension ".encrypted" is a valid PC file.
The standard compiler #INCLUDE directive will accept files with this
extension and decrypt them as they are read. This allows include files
to be distributed without releasing the source code.
Text from the specified file is used at this point of the compilation. If a
full path is not specified the compiler will use the list of directories
specified for the project to search for the file. If the filename is in ™

Purpose: then the directory with the main source file is searched first. If the
filename is in <> then the directory with the main source file is
searched last.

Examples: #include <16C54.H>

Example Files:
Also See:

#include <C:\INCLUDES\COMLIB\MYRS232.C>

ex_sqw.c

None

105

../HelpFile/CCSC/javascript:shortcutlink.click()

CCS C Compiler

#inline
Syntax: #INLINE
Elements: None
Tells the compiler that the function immediately following the directive
is to be implemented INLINE. This will cause a duplicate copy of the
PUrpOSE: code to be placed everywhere the function is called. This is useful to
P ' save stack space and to increase speed. Without this directive the
compiler will decide when it is best to make procedures INLINE.
Examples: #inline
swapbyte (int &a, int &b) {
int t;
t=a;
a=b;
b=t
}
Example Files: 8x_cust.c
Also See: #SEPARATE
#INt_XXXX
Syntax: #INT_AD Analog to digital conversion
complete
#INT_ADOF Analog to digital conversion
timeout
#INT_BUSCOL Bus collision
#INT_BUSCOL2 Bus collision 2 detected

106

../HelpFile/CCSC/javascript:shortcutlink.click()

PreProcessor

#INT_BUTTON Pushbutton

An invalid message has occurred

HINT_CANIRX on the CAN bus

CAN Receive buffer 1 has

#INT_CANRX1 .
- received a hew message

CAN Transmit buffer 0 has

#INT CANTX1 L.
- completed transmission

Bus Activity wake-up has occurred

#INT_CANWAKE on the CAN bus

#INT_CCP2 Capture or Compare on unit 2

#INT_CCP4 Capture or Compare on unit 4

#INT_COMP Comparator detect

#INT_COMP1 Comparator 1 detect

#INT_CR Cryptographic activity complete

#INT_ETH Ethernet module interrupt

#INT_EXT1 External interrupt #1

#INT_EXT3 External interrupt #3

#INT_IC1 Input Capture #1

#IC3DR Input Capture 3 / Direction Change

107

CCS C Compiler

Interrupt

#INT_LOWVOLT Low voltage detected

#INT_OSC_FAIL System oscillator failed

#INT_PMP Parallel Master Port interrupt

#INT_PWMTB PWM Time Base

#INT_RB Port B any change on B4-B7

#INT_RDA RS232 receive data available

RS232 receive data available in

#INT_RDA1 buffer 1

#INT_RTCC Timer 0 (RTCC) overflow

#INT_SSP SPI or 12C activity

#INT_TBE RS232 transmit buffer empty

#INT_TBE1 RS232 transmit buffer 1 empty

#INT_TIMERO Timer 0 (RTCC) overflow

#INT_TIMER2 Timer 2 overflow

#INT_TIMER4 Timer 4 overflow

108

PreProcessor

#INT_ULPWU Ultra-low power wake up interrupt
#INT_USB Universal Serial Bus activity

Note many more #INT_ options are available on specific chips.
Check the devices .h file for a full list for a given chip.

Elements:

Purpose:

None

These directives specify the following function is an interrupt function.
Interrupt functions may not have any parameters. Not all directives
may be used with all parts. See the devices .h file for all valid
interrupts for the part or in PCW use the pull down VIEW | Valid Ints

The compiler will generate code to jump to the function when the
interrupt is detected. It will generate code to save and restore the
machine state, and will clear the interrupt flag. To prevent the flag
from being cleared add NOCLEAR after the #INT_xxxx. The
application program must call ENABLE_INTERRUPTS(INT_xxxx) to
initially activate the interrupt along with the
ENABLE_INTERRUPTS(GLOBAL) to enable interrupts.

The keywords HIGH and FAST may be used with the PCH compiler to
mark an interrupt as high priority. A high-priority interrupt can interrupt
another interrupt handler. An interrupt marked FAST is performed
without saving or restoring any registers. You should do as little as
possible and save any registers that need to be saved on your own.
Interrupts marked HIGH can be used normally. See #DEVICE for
information on building with high-priority interrupts.

A summary of the different kinds of PIC18 interrupts:
#INT _Xxxx
Normal (low priority) interrupt. Compiler saves/restores key
registers.
This interrupt will not interrupt any interrupt in progress.
#INT_xxxx FAST
High priority interrupt. Compiler DOES NOT save/restore key
registers.
This interrupt will interrupt any normal interrupt in progress.
Only one is allowed in a program.
#INT _xxxx HIGH
High priority interrupt. Compiler saves/restores key registers.
This interrupt will interrupt any normal interrupt in progress.
#INT_xxxx NOCLEAR
The compiler will not clear the interrupt.
The user code in the function should call clear_interrput() to
clear the interrupt in this case.
#INT_GLOBAL

109

CCS C Compiler

Examples:

Example Files:
Also See:

Compiler generates no interrupt code. User function is located
at address 8 for user interrupt handling.

Some interrupts shown in the devices header file are only for the
enable/disable interrupts. For example, INT_RB3 may be used in
enable/interrupts to enable pin B3. However, the interrupt handler is
#INT_RB.

Similarly INT_EXT_L2H sets the interrupt edge to falling and the
handler is #INT_EXT.

#int ad

adc handler () {
adc_active=FALSE;

}

#int rtcc noclear
isr() {

}

See ex_sisr.c and ex_stwt.c for full example programs.

enable interrupts(), disable interrupts(), #INT DEFAULT,
#INT GLOBAL, #PRIORITY

#INT_DEFAULT

Syntax: #INT_DEFAULT
Elements: None
The following function will be called if the PIC® triggers an interrupt
PUrDOSE: and none of the interrupt flags are set. If an interrupt is flagged, but is
pose. not the one triggered, the #INT_DEFAULT function will get called.
Examples: #int default

Example Files:

Also See:

default isr() {
printf ("Unexplained interrupt\r\n");

}

None

#INT xxxx, #INT global

110

../HelpFile/CCSC/javascript:shortcutlink2.click()
../HelpFile/CCSC/javascript:shortcutlink2.click()

PreProcessor

#int_global

Syntax: #INT_GLOBAL
Elements: None
This directive causes the following function to replace the compiler interrupt
dispatcher. The function is normally not required and should be used with
Purpose: great caution. When used, the compiler does not generate start-up code or
clean-up code, and does not save the registers.
Examples: #int global
isr() { // Will be located at location 4 for PIC16 chips.
#asm
bsf isr flag
retfie
#endasm
}
Example Files: ex_glint.c
Also See: #INT_ XxXXX
line
Syntax: _line__
Elements: None
The pre-processor identifier is replaced at compile time with line
Purpose: number of the file being compiled.
Exan”ﬂes; if (index>MAX ENTRIES)

Example Files:

Also See:

printf ("Too many entries, source file:
_ FILE " at line " _LINE _ "\r\n");

assert.h

file

111

../HelpFile/CCSC/javascript:shortcutlink.click()
../HelpFile/CCSC/javascript:shortcutlink.click()

CCS C Compiler

#list

Syntax: #LIST

Elements: None

#LIST begins inserting or resumes inserting source lines into the .LST

Purpose: file after a #NOLIST.

Examples: #NOLIST // Don't clutter up the list file
#include <cdriver.h>
#LIST

Example Files: 16c74.h

Also See: #NOLIST

#line

Syntax: #LINE number file name

Elements: Number is non-negative decimal integer. File name is optional.

The C pre-processor informs the C Compiler of the location in your

= . source code. This code is simply used to change the value of _LINE_

urpose: .
and _FILE_ variables.

Examples: 1. void main() {
#line 10 // specifies the line number that
// should be reported for
// the following line of input

2. #line 7 "hello.c"
// line number in the source file
// hello.c and it sets the
// line 7 as current line
// and hello.c as current file

Example Files: None

Also See: None

112

../HelpFile/CCSC/javascript:shortcutlink2.click()

PreProcessor

#locate

Syntax: #LOCATE id=x

Elements: id is a C variable,
X is a constant memory address
#LOCATE allocates a C variable to a specified address. If the C
variable was not previously defined, it will be defined as an INT8.
A special form of this directive may be used to locate all A functions

. local variables starting at a fixed location.

Purpose: Use: #LOCATE Auto = address
This directive will place the indirected C variable at the requested
address.

Exanuﬂes; // This will locate the float variable at 50-53

Example Files:

// and C will not use this memory for other
// variables automatically located.

float x;

#locate x=0x 50

ex_glint.c

Also See: #byte, #bit, #reserve, #word, Named Reqisters, Type Specifiers, Type
Qualifiers, Enumerated Types, Structures & Unions, Typedef
#module
Syntax: #MODULE
Elements: None
All global symbols created from the #MODULE to the end of the file
will only be visible within that same block of code (and files #INCLUDE
Purpose: within that block). This may be used to limit the scope of global

variables and functions within include files. This directive also applies
to pre-processor #defines.
Note: The extern and static data qualifiers can also be used to denote

113

../HelpFile/CCSC/javascript:shortcutlink.click()

CCS C Compiler

Examples:

Example Files:

scope of variables and functions as in the standard C methodology.
#MODULE does add some benefits in that pre-processor #DEFINE
can be given scope, which cannot normally be done in standard C
methodology.

int GetCount (void) ;
void SetCount (int newCount) ;
#MODULE
int g_count;
#define G COUNT MAX 100
int GetCount (void) {return(g count);}
void SetCount (int newCount) {

if (newCount>G COUNT MAX)

newCount=G COUNT MAX;

g count=newCount;
}
/*
the functions GetCount () and SetCount () have global scope,
but the variable g count and the #define G COUNT MAX only
has scope to this file.
&7

None

See Also: #EXPORT, Invoking the Command Line Compiler, Multiple
Compilation Unit

#nolist

Syntax: #NOLIST

Elements: None

Purpose: Stops inserting source lines into the .LST file (until a #LIST)

Examples: #NOLIST // Don't clutter up the list file
#include <cdriver.h>
#LIST

Example Files: 16cra.h

Also See: #LIST

114

../HelpFile/CCSC/javascript:shortcutlink.click()

PreProcessor

#0cCS

Syntax: #0OCS x

Elements: x is the clock's speed and can be 1 Hz to 100 MHz.
Purpose: Used instead of the #use delay(clock = x)
Examples: #include <18F4520.h>

#device ICD=TRUE
#0CS 20 MHz
#use rs232 (debugger)

void main () {

Example Files: None

Also See: #USE DELAY

#opt

Syntax: #OPT n

Elements: All Devices: n is the optimization level 1-9 or by using the word
"compress" for PIC18 and Enhanced PIC16 families.
The optimization level is set with this directive. This setting applies to
the entire program and may appear anywhere in the file. The PCW

PuUrpose: default is 9 for normal. When Compress is specified the optimization

P ' is set to an extreme level that causes a very tight rom image, the code

is optimized for space, not speed. Debugging with this level my be
more difficult.

Examples: #opt 5

Example Files: None

Also See: None

115

CCS C Compiler

#org

Syntax: #ORG start, end
or
#ORG segment
or
#ORG start, end { }
or
#ORG start, end auto=0
#ORG start,end DEFAULT
or
#0ORG DEFAULT
Elements: start is the first ROM location (word address) to use, end is the last
ROM location, segment is the start ROM location from a previous
#0ORG
This directive will fix the following function, constant or ROM
declaration into a specific ROM area. End may be omitted if a
segment was previously defined if you only want to add another
function to the segment.
Follow the ORG with a { } to only reserve the area with nothing
inserted by the compiler.
The RAM for a ORG'd function may be reset to low memory so the
local variables and scratch variables are placed in low memory. This
should only be used if the ORG'd function will not return to the
caller. The RAM used will overlap the RAM of the main program. Add
a AUTO=0 at the end of the #ORG line.
Purpose:

If the keyword DEFAULT is used then this address range is used for
all functions user and compiler generated from this point in the file
until a #ORG DEFAULT is encountered (no address range). If a
compiler function is called from the generated code while DEFAULT is
in effect the compiler generates a new version of the function within
the specified address range.

#ORG may be used to locate data in ROM. Because CONSTANT are
implemented as functions the #ORG should proceed the CONSTANT
and needs a start and end address. For a ROM declaration only the
start address should be specified.

When linking multiple compilation units be aware this directive applies

116

PreProcessor

Examples:

to the final object file. It is an error if any #ORG overlaps between files
unless the #ORG matches exactly.

#ORG 0x1E00, Ox1FFF

MyFunc () {

//This function located at 1E00
}

#ORG 0x1EO00

Anotherfunc () {

// This will be somewhere 1E00-1F00
}

#0ORG 0x800, 0x820 {}
//Nothing will be at 800-820

#ORG 0x1B80
ROM int32 seridl N0=12345;

#ORG 0x1C00, Ox1COF

CHAR CONST ID[10}= {"123456789"};
//This ID will be at 1CO00

//Note some extra code will
//proceed the 123456789

#ORG 0x1F00, Ox1FFO
Void loader () {

}

Example Files: loader.c

Also See: #ROM

#pin_select

Syntax: #PIN_SELECT function=pin_xx

Element function is the Microchip defined pin function name, such
S: as: ULRX (UARTL1 receive), INT1 (external interrupt 1),

T2CK (timer 2 clock), IC1 (input capture 1), OC1 (output
capture 1).

INT1 External Interrupt 1

117

../HelpFile/CCSC/javascript:shortcutlink2.click()

CCS C Compiler

INT2
INT3
TOC

T3C
CCP
CCP
T1G
T3G
U2R
u2C
SDI
SCK
2IN
SS2i
FLT
TOC
Kl
T3C
Kl
RX2
NUL
C10
uT
C20
uT
u2T
uz2D
SDO

SCK
20U

External Interrupt 2
External Interrupt 3
TimerO External Clock

Timer3 External Clock
Input Capture 1

Input Capture 2

Timerl Gate Input

Timer3 Gate Input

EUSART2 Asynchronous
Receive/Synchronous Receive
(also named: RX2)

EUSART2 Asynchronous Clock
Input

SPI2 Data Input

SPI2 Clock Input
SPI2 Slave Select Input

PWM Fault Input
TimerO External Clock Input

Timer3 External Clock Input

EUSART2 Asynchronous
Transmit/Asynchronous Clock
Output (also named: TX2)

NULL
Comparator 1 Output

Comparator 2 Output

EUSART2 Asynchronous
Transmit/ Asynchronous Clock
Output (also named: TX2)
EUSART2 Synchronous
Transmit (also hamed: DT2)
SPI2 Data Output

SPIC2 Clock Output

118

PreProcessor

SS2 SPI2 Slave Select Output
ouT

ULP Ultra Low-Power Wake-Up
ouT Event

P1A ECCP1 Compare or PWM

Output Channel A

P1B ECCP1 Enhanced PWM
Output, Channel B

P1C ECCP1 Enhanced PWM
Output, Channel C

P1D ECCP1 Enhanced PWM
Output, Channel D

P2A ECCP2 Compare or PWM

Output Channel A

PoB ECCP2 Enhanced PWM
Output, Channel B

P2C ECCP2 Enhanced PWM
Output, Channel C

P2D ECCP1 Enhanced PWM
Output, Channel D

TX2 EUSART2 Asynchronous

Transmit/Asynchronous Clock

Output (also named: TX2)

EUSART2 Synchronous

DT2 Transmit (also named: U2DT)
SCK SPI2 Clock Output

2

SSD

MA SPI DMA Slave Select

pin_xx is the CCS provided pin definition. For example:
PIN_C7, PIN_BO, PIN_D3, etc.

When using PPS chips a #PIN_SELECT must be appear

Purpos .
e P before these peripherals can be used or referenced.
Exampl #pin select ULTX=PIN C6
es: #pin select UIRX=PIN C7
#pin select INT1=PIN BO
Exampl None
e Files:
Also pin_select()
See:

119

CCS C Compiler

__bcb__

Syntax: __PCB__

Elements: None

The PCB compiler defines this pre-processor identifier. It may be used

Purpose: to determine if the PCB compiler is doing the compilation.
Examples: #ifdef pcb
fdevice PICl6c54
#endif
Example Files: S
Also See: PCM_,_ PCH
__pcm__
Syntax: __PCM__
Elements: None
The PCM compiler defines this pre-processor identifier. It may be used
Purpose: to determine if the PCM compiler is doing the compilation.
Examples: #ifdef pcm
#device PICl6c71
#endif
Example Files: Sl
Also See: PCB ,_PCH

120

../HelpFile/CCSC/javascript:shortcutlink.click()
../HelpFile/CCSC/javascript:shortcutlink.click()

__bch__

PreProcessor

Syntax: __PCH__
Elements: None
PuUrpose: The PCH compiler defines this pre-processor identifier. It may be used
P ' to determine if the PCH compiler is doing the compilation.
Examples: #ifdef =~ PCH
#device PIC18C452
#endif
Example Files: ex_sgw.c
Also See: PCB , PCM
#pragma
Syntax: #PRAGMA cmd
Elements: cmd is any valid preprocessor directive.
This directive is used to maintain compatibility between C
compilers. This compiler will accept this directive before any other pre-
Purpose: processor command. In no case does this compiler require this
directive.
Examples: #pragma device PIC16C54

Example Files:
Also See:

ex_cust.c

None

#priority

Syntax: #PRIORITY ints

Elements: ints is a list of one or more interrupts separated by commas.
export makes the functions generated from this directive available to
other compilation units within the link.

Purpose: The priority directive may be used to set the interrupt priority. The

highest priority items are first in the list. If an interrupt is active it is

121

../HelpFile/CCSC/javascript:shortcutlink.click()
../HelpFile/CCSC/javascript:shortcutlink.click()

CCS C Compiler

Examples:

Example Files:

Also See:

never interrupted. If two interrupts occur at around the same time then
the higher one in this list will be serviced first. When linking multiple
compilation units be aware only the one in the last compilation unit is
used.

#priority rtcc, rb

None

#INT XXXX

#profile

Syntax: #profile options
Elements: options may be one of the following:
functions Profiles the start/end of functions and all
profileout() messages.
functions, Profiles the start/end of functions, parameters
parameters sent to functions, and all profileout() messages.
profileout Only profile profilout() messages.
paths Profiles every branch in the code.
off Disable all code profiling.
on Re-enables the code profiling that was
previously disabled with a #profile off command.
This will use the last options before disabled
with the off command.
Large programs on the microcontroller may generate lots of profile
data, which may make it difficult to debug or follow. By using #profile
Purpose: the user can dynamically control which points of the program are being
profiled, and limit data to what is relevant to the user.
Examples: #profile off

void BigFunction (void)
{
// BigFunction code goes here.
// Since #profile off was called above,
// no profiling will happen even for other
// functions called by BigFunction() .

122

PreProcessor

Example Files:

#profile on

ex_profile.c

Also See: #use profile(), profileout(), Code Profile overview
#reserve
Syntax: #RESERVE address
or
#RESERVE address, address, address
or
#RESERVE start:end
Elements: address is a RAM address, start is the first address and end is the last
This directive allows RAM locations to be reserved from use by the
compiler. #RESERVE must appear after the #DEVICE otherwise it will
Purpose: have no effect. When linking multiple compilation units be aware this
directive applies to the final object file.
Examples: #DEVICE PIC16C74
#RESERVE 0x60:0X6f
Example Files: ex_cust.c
Also See: #ORG
#rom
Syntax: #ROM address = {list}
#ROM type address = {list}
Elements: address is a ROM word address, list is a list of words separated by
commas
Allows the insertion of data into the .HEX file. In particular, this may
Purpose: be used to program the '84 data EEPROM, as shown in the following

example.

123

../HelpFile/CCSC/javascript:shortcutlink.click()

CCS C Compiler

Note that if the #ROM address is inside the program memory space,
the directive creates a segment for the data, resulting in an error if a
#ORG is over the same area. The #ROM data will also be counted as
used program memory space.

The type option indicates the type of each item, the default is 16 bits.
Using char as the type treats each item as 7 bits packing 2 chars into
every pcm 14-bit word.

When linking multiple compilation units be aware this directive applies
to the final object file.

Some special forms of this directive may be used for verifying program
memory:

#ROM address = checksum
This will put a value at address such that the entire program
memory will sum to 0x1248

#ROM address = crcl6
This will put a value at address that is a crc16 of all the program
memory except the specified address

#ROM address = crcl6(start, end)
This will put a value at address that is a crc16 of all the program
memory from start to end.

#ROM address = crc8
This will put a value at address that is a crc16 of all the program
memory except the specified address

Examples: #rom getnev ("EEPROM ADDRESS")={1,2,3,4,5,6,7,8}
#rom int8 0x1000={"(c)CCS, 2010"}
Example Files: None
Also See: #ORG
#separate
Syntax: #SEPARATE
Elements: None
Purpose: Tells the compiler that the procedure IMMEDIATELY following the

124

PreProcessor

directive is to be implemented SEPARATELY. This is useful to prevent
the compiler from automatically making a procedure INLINE. This will
save ROM space but it does use more stack space. The compiler will
make all procedures marked SEPARATE, separate, as requested,
even if there is not enough stack space to execute.

Examples: #separate
swapbyte (int *a, int *b) {
int t;
t=*a;
*a:*b;
*b=t;
}
Example Files: ex_cust.c
Also See: #INLINE
#serialize
Syntax: #SERIALIZE(id=xxx, next="x" | file="filename.txt" " |
listfile="filename.txt", "prompt="text", log="filename.txt") -
or
#SERIALIZE(dataee=x, binary=x, next="x" | file="filename.txt" |
listfile="filename.txt", prompt="text", log="filename.txt")
Elements: id=xxx - Specify a C CONST identifier, may be int8, int16, int32 or

char array

Use in place of id parameter, when storing serial number to EEPROM:
dataee=x - The address x is the start address in the data EEPROM.
binary=x - The integer x is the number of bytes to be written to
address specified. -or-
string=x - The integer x is the number of bytes to be written to
address specified.
unicode=n - If n is a 0, the string format is normal unicode. For n>0 n
indicates the string

number in a USB descriptor.

Use only one of the next three options:

file="filename.txt" - The file x is used to read the initial serial number
from, and this file is updated by the ICD programmer. It is assumed
this is a one line file with the serial number. The programmer will
increment the serial number.

listfile="filename.txt" - The file x is used to read the initial serial

125

../HelpFile/CCSC/javascript:shortcutlink.click()

CCS C Compiler

number from, and this file is updated by the ICD programmer. It is
assumed this is a file one serial number per line. The programmer will
read the first line then delete that line from the file.

next="x" - The serial number X is used for the first load, then the hex
file is updated to increment x by one.

Other optional parameters:

prompt="text" - If specified the user will be prompted for a serial
number on each load. If used with one of the above three options then
the default value the user may use is picked according to the above
rules.

log=xxx - A file may optionally be specified to keep a log of the date,
time, hex file name and serial number each time the part is
programmed. If no id=xxx is specified then this may be used as a
simple log of all loads of the hex file.

Assists in making serial numbers easier to implement when working
. with CCS ICD units. Comments are inserted into the hex file that the
Purpose: .
ICD software interprets.
Examples: //Prompt user for serial number to be placed
//at address of serialNumA
//Default serial number = 200int8int8 const
serialNumA=100;
#serialize (id=serialNumA, next="200", prompt="Enter the
serial number")

//Adds serial number log in seriallog.txt
#serialize (id=serialNumA, next="200", prompt="Enter the
serial number", log="seriallog.txt")

//Retrieves serial number from serials.txt
#serialize (id=serialNumA, listfile="serials.txt")

//Place serial number at EEPROM address 0, reserving 1
byte

#serialize (dataee=0,binary=1,next="45",prompt="Put in
Serial number")

//Place string serial number at EEPROM address 0,
reserving 2 bytes

#serialize (dataee=0, string=2,next="AB",prompt="Put in
Serial number")

Example Files: None

Also See: None

126

#task

PreProcessor

(The RTOS is only included with the PCW, PCWH, and PCWHD software packages.)

Each RTOS task is specified as a function that has no parameters and no return. The
#TASK directive is needed just before each RTOS task to enable the compiler to tell which
functions are RTOS tasks. An RTOS task cannot be called directly like a regular function

can.
Syntax: #TASK (options)
Elements: options are separated by comma and may be:
rate=time
Where time is a number followed by s, ms, us, or ns. This specifies
how often the task will execute.
max=time
Where time is a number followed by s, ms, us, or ns. This specifies the
budgeted time for this task.
gueue=bytes
Specifies how many bytes to allocate for this task's incoming
messages. The default value is 0.
enabled=value
Specifies whether a task is enabled or disabled by rtos_run().
True for enabled, false for disabled. The default value is enabled.
This directive tells the compiler that the following function is an RTOS
task.
The rate option is used to specify how often the task should execute.
This must be a multiple of the minor_cycle option if one is specified in
the #USE RTOS directive.
Purpose: The max option is used to specify how much processor time a task will

use in one execution of the task. The time specified in max must be
equal to or less than the time specified in the minor_cycle option of the
#USE RTOS directive before the project will compile successfully. The
compiler does not have a way to enforce this limit on processor time,
so a programmer must be careful with how much processor time a
task uses for execution. This option does not need to be specified.

The queue option is used to specify the number of bytes to be

127

CCS C Compiler

reserved
for the task to receive messages from other tasks or functions. The
default queue value is 0.

Examples: #task (rate=1s, max=20ms, queue=5)
Also See: #USERTOS

time
Syntax: __TIME__
Elements: None

This pre-processor identifier is replaced at compile time with the time

Purpose: of the compile in the form: "hh:mm:ss"
Examples: printf ("Software was compiled on ");

Example Files:

Also See:

printf(TIME);
None

None

#type

Syntax: #TYPE standard-type=size
#TYPE default=area
#TYPE unsigned
#TYPE signed
Elements: standard-type is one of the C keywords short, int, long, or default
size is 1,8,16, or 32
area is a memory region defined before the #TYPE using the
addressmod directive
By default the compiler treats SHORT as one bit, INT as 8 bits, and
LONG as 16 bits. The traditional C convention is to have INT defined
Purpose: as the most efficient size for the target processor. This is why it is 8

bits on the PIC ® . In order to help with code compatibility a #TYPE
directive may be used to allow these types to be changed. #TYPE can

128

PreProcessor

Examples:

Example Files:

Also See:

redefine these keywords.

Note that the commas are optional. Since #TYPE may render some
sizes inaccessible (like a one bit int in the above) four keywords
representing the four ints may always be used: INT1, INT8, INT16,
and INT32. Be warned CCS example programs and include files
may not work right if you use #TYPE in your program.

This directive may also be used to change the default RAM area used
for variable storage. This is done by specifying default=area where
area is a addressmod address space.

When linking multiple compilation units be aware this directive only
applies to the current compilation unit.

The #TYPE directive allows the keywords UNSIGNED and SIGNED to
set the default data type.

#TYPE SHORT= 8 , INT= 16 , LONG= 32

#TYPE default=area

addressmod (user_ram block, 0x100, Ox1FF);

#type default=user ram block // all variable declarations
// in this area will be in
// 0x100-0x1FF

#type default= // restores memory

allocation
// back to normal

#TYPE SIGNED

void main ()

{

int variablel; // variablel can only take values from -
128 to 127

}
ex_cust.c

None

129

../HelpFile/CCSC/javascript:shortcutlink.click()

CCS C Compiler

#undef

Syntax: #UNDEF id

Elements: id is a pre-processor id defined via #DEFINE

The specified pre-processor ID will no longer have meaning to the pre-
Purpose: processor.

Examples: #if MAXSIZE<100
#undef MAXSIZE
#define MAXSIZE 100

#endif
Example Files: None
Also See: #DEFINE

_unicode

Syntax:
__unicode(constant-string)

Elements:
Unicode format string
This macro will convert a standard ASCII string to a
Unicode format string by inserting a \O0O after each
character and removing the normal C string terminator.
For example: _unicode("ABCD")
will return: "A\O0B\0OOC\000D" (8 bytes total with the
terminator)

Purpose

Since the normal C terminator is not used for these
strings you need to do one of the following for variable
length strings:

string = _unicode(KEYWORD) "\000\000";
OR

string = _unicode(KEYWORD);

string_size = sizeof(_unicode(KEYWORD));

130

PreProcessor

Examples: #define USB DESC_STRING TYPE 3

#define USB STRING (x)
(sizeof (_unicode(x))+2),USB DESC STRING TYPE, unicod
#define USB_ENGLISH STRING 4,USB_DESC_STRING_TYPE,O

//Microsoft Defined for US-English

char const USB STRING DESC[]=[
USB ENGLISH STRING,
USB_STRING ("CCS"),
USB_STRING("CCS HID DEMO")
}i

Example Files: usb_desc_hid.h

#use capture

Syntax: #USE CAPTURE(options)

Elements: ICx/CCPx
Which CCP/Input Capture module to us.

INPUT = PIN_xx

Specifies which pin to use. Useful for device with
remappable pins, this will cause compiler to
automatically assign pin to peripheral.

TIMER=x

Specifies the timer to use with capture unit. If not
specified default to timer 1 for PCM and PCH compilers
and timer 3 for PCD compiler.

TICK=x

The tick time to setup the timer to. If not specified it will
be set to fastest as possible or if same timer was already
setup by a previous stream it will be set to that tick time.
If using same timer as previous stream and different tick
time an error will be generated.

FASTEST
Use instead of TICK=x to set tick time to fastest as
possible.

SLOWEST

131

CCS C Compiler

Purpos
e:

Exampl
es:

Exampl
e Files:
Also See:

Use instead of TICK=x to set tick time to slowest as
possible.

CAPTURE_RISING
Specifies the edge that timer value is captured on.
Defaults to CAPTURE_RISING.

CAPTURE_FALLING
Specifies the edge that timer value is captured on.
Defaults to CAPTURE_RISING.

CAPTURE_BOTH
PCD only. Specifies the edge that timer value is
captured on. Defaults to CAPTURE_RISING.

PRE=x

Specifies number of rising edges before capture event
occurs. Valid options are 1, 4 and 16, default to 1 if not
specified. Options 4 and 16 are only valid when using
CAPTURE_RISING, will generate an error is used with
CAPTURE_FALLING or CAPTURE_BOTH.

ISR=x

STREAM=id

Associates a stream identifier with the capture module.
The identifier may be used in functions like
get_capture_time().

DEFINE=id

Creates a define named id which specifies the number of
capture per second. Default define name if not specified
is CAPTURES_PER_SECOND. Define name must start
with an ASCII letter 'A' to 'Z', an ASCII letter 'a’ to 'z' or
an ASCII underscore ("_").

This directive tells the compiler to setup an input capture
on the specified pin using the specified settings. The
#USE DELAY directive must appear before this directive
can be used. This directive enables use of built-in
functions such as get_capture_time() and
get_capture_event().

#USE
CAPTURE(INPUT=PIN_C2,CAPTURE_RISING, TIMER=
1,FASTEST)

None.

get capture time(), get capture event()

132

PreProcessor

#use delay
Syntax: #USE DELAY (options))
Elements: Options may be any of the following separated by commas:

clock=speed speed is a constant 1-100000000 (1 hz to 100 mhz).
This number can contains commas. This number also supports the
following denominations: M, MHZ, K, KHZ. This specifies the clock the
CPU runs at. Depending on the PIC this is 2 or 4 times the instruction
rate. This directive is not needed if the following type=speed is used
and there is no frequency multiplication or division.

type=speed type defines what kind of clock you are using, and the
following values are valid: oscillator, osc (same as oscillator), crystal,
xtal (same as crystal), internal, int (same as internal) or rc. The
compiler will automatically set the oscillator configuration bits based
upon your defined type. If you specified internal, the compiler will also
automatically set the internal oscillator to the defined speed.
Configuration fuses are modified when this option is used. Speed is
the input frequency.

restart_wdt will restart the watchdog timer on every delay_us() and
delay_ms() use.

clock_out when used with the internal or oscillator types this enables
the clockout pin to output the clock.

fast_start some chips allow the chip to begin execution using an
internal clock until the primary clock is stable.

lock some chips can prevent the oscillator type from being changed at
run time by the software.

USB or USB_FULL for devices with a built-in USB peripheral. When
used with the type=speed option the compiler will set the correct
configuration bits for the USB peripheral to operate at Full-Speed.

USB_LOW for devices with a built-in USB peripheral. When used with
the type=speed option the compiler will set the correct configuration
bits for the USB peripheral to operate at Low-Speed.

PLL_WAIT for devices with a PLL and a PLL Ready Status flag to
test. When a PLL clock is specified it will cause the compiler to poll
the ready PLL Ready Flag and only continue program execution when
flag indicates that the PLL is ready.

133

CCS C Compiler

Also See:

ACT or ACT=type for device with Active Clock Tuning, type can be
either USB or SOSC. If only using ACT type will default to USB.
ACT=USB causes the compiler to enable the active clock tuning and
to tune the internal oscillator to the USB clock. ACT=SOSC causes
the compiler to enable the active clock tuning and to tune the internal
oscillator to the secondary clock at 32.768 kHz. ACT can only be used
when the system clock is set to run from the internal oscillator.

delay _ms(), delay us()

#use dynamic_memory

Syntax: #USE DYNAMIC_MEMORY
Elements: None
This pre-processor directive instructs the compiler to create the
. DYNAMIC_HEAD object. _DYNAMIC_HEAD is the location where
Purpose: - — . — -
the first free space is allocated.
Examples: #USE DYNAMIC MEMORY

Example Files:

Also See:

void main () {

}
ex_malloc.c

None

#use fast_io

Syntax: #USE FAST_10 (port)

Elements: portisA,B,C,D, E,F, G, H, Jor ALL
Affects how the compiler will generate code for input and output
instructions that follow. This directive takes effect until another #use
xxxx_lO directive is encountered. The fast method of doing 1/0 will

Purpose: cause the compiler to perform 1/O without programming of the direction

register. The compiler's default operation is the opposite of this
command, the direction 1/0 will be set/cleared on each 1/O operation.
The user must ensure the direction register is set correctly via

134

../HelpFile/CCSC/javascript:shortcutlink.click()

PreProcessor

Examples:

Example Files:
Also See:

set_tris_X(). When linking multiple compilation units be aware this
directive only applies to the current compilation unit.

#use fast io(A)
ex_cust.c

#USE FIXED 10, #USE STANDARD 10, set_tris X() , General
Purpose 1/0

#use fixed

0

Syntax:

#USE FIXED_IO (port_outputs=pin, pin?)

Elements:

Purpose:

Examples:

Example Files:

port is A-G, pin is one of the pin constants defined in the devices .h
file.

This directive affects how the compiler will generate code for input and
output instructions that follow. This directive takes effect until another
#USE XXX_IO directive is encountered. The fixed method of doing 1/0
will cause the compiler to generate code to make an 1/O pin either
input or output every time it is used. The pins are programmed
according to the information in this directive (not the operations
actually performed). This saves a byte of RAM used in standard 1/O.
When linking multiple compilation units be aware this directive only
applies to the current compilation unit.

#use fixed io(a_outputs=PIN_A2, PIN_A3)

None

Also See: #USE FAST 10, #USE STANDARD 10, General Purpose 1/O
#use i2c

Syntax: #USE 12C (options)

Elements: Options are separated by commas and may be:

MASTER
MULTI_MASTER

Sets to the master mode

Set the multi_master mode

135

../HelpFile/CCSC/javascript:shortcutlink.click()

CCS C Compiler

Purpose:

SLAVE
SCL=pin

SDA=pin
ADDRESS=nn

FAST
FAST=nnnnnn

SLOW
RESTART_WDT

FORCE_HW
FORCE_SW

NOFLOAT_HIGH
SMBUS
STREAM=id
NO_STRETCH

MASK=nn
12C1

12C2

NOINIT

Set the slave mode
Specifies the SCL pin (pin is a bit address)

Specifies the SDA pin
Specifies the slave mode address

Use the fast 12C specification.
Sets the speed to nnnnnn hz

Use the slow I2C specification

Restart the WDT while waiting in
I2C_READ

Use hardware 12C functions.
Use software 12C functions.

Does not allow signals to float high, signals
are driven from low to high
Bus used is not 12C bus, but very similar

Associates a stream identifier with this 12C
port. The identifier may then be used in
functions like i2c_read or i2c_write.

Do not allow clock streaching

Set an address mask for parts that support
it

Instead of SCL= and SDA= this sets the
pins to the first module

Instead of SCL= and SDA= this sets the
pins to the second module

No initialization of the 12C peripheral is
performed. Use 12C_INIT() to initialize
peripheral at run time.

Only some chips allow the following:

DATA_HOLD

No ACK is sent until I2C_READ is calle

(slave only)

ADDRESS_HOLD

SDA HOLD

No ACK is sent until I2C_read is called fol

(slave only)

Min of 300ns holdtime on SDA a from SCI

CCS offers support for the hardware-based I12C™ and a software-
based master I2C™ device.(For more information on the hardware-
based 12C module, please consult the datasheet for your target
device; not all PICs support [2C™.

The 12C library contains functions to implement an 12C bus. The #USE

136

PreProcessor

I2C remains in effect for the 12C_START, 12C_STOP, I12C_READ,
I2C_WRITE and 12C_POLL functions until another USE 12C is
encountered. Software functions are generated unless the
FORCE_HW is specified. The SLAVE mode should only be used with
the built-in SSP. The functions created with this directive are exported
when using multiple compilation units. To access the correct function
use the stream identifier.

Examples: #use I2C (master, sda=PIN BO, scl=PIN BIl)

#use I2C(slave,sda=PIN C4,scl=PIN C3
address=0xa0, FORCE HW)

#use I2C(master, scl=PIN BO, sda=PIN Bl, fast=450000)
//sets the target speed to 450 KBSP

ex_extee.c with 16¢74.h

Example Files:

Also See: i2c_poll, i2c_speed, i2c_start, i2c_stop, i2¢c_slaveaddr,
i2c_isr_state, i2c_write, i2c_read, 12C Overview

#use profile()

Syntax: #use profile(options)
Elements: options may be any of the following, comma separated:
ICD Default — configures code profiler to use
the ICD connection.
TIMER1 Optional. If specified, the code

profiler run-time on the microcontroller
will use the Timerl peripheral as a
timestamp for all profile events. If not
specified the code profiler tool will use
the PC clock, which may not be

accurate for fast events.

Optional. If specified, will use a different baud

rate between the microcontroller and the code
BAUD=x profiler tool. This may be required on slow

microcontrollers to attempt to use a slower

baud rate.

Tell the compiler to add the code profiler run-time in the
Purpose: microcontroller and configure the link and clock.

137

../HelpFile/CCSC/javascript:shortcutlink.click()
../HelpFile/CCSC/javascript:shortcutlink3.click()

CCS C Compiler

Examples:

Example Files:

#profile(ICD, TIMER1, baud=9600)

ex_profile.c

Also See: #profile(), profileout(), Code Profile overview
#use pwm()

Syntax: #use pwm (options)

Elements: options are separated by commas and may be:

PWMx or CCPx Selects the CCP to use, x being the
module number to use.

OUTPUT=PIN_xx Selects the PWM pin to use, pin must be
one of the CCP pins. If device has
remappable pins compiler will assign
specified pin to specified CCP module. If
CCP module not specified it will assign
remappable pin to first available module.
Selects timer to use with PWM module,
QLR default if not specified is timer 2.
FREQUENCY=x Sets the period of PWM based off specified
value, should not be used if PERIOD is
already specified. If frequency can't be
achieved exactly compiler will generate a
message specifying the exact frequency and
period of PWM. If neither FREQUENCY or
PERIOD is specified, the period defaults to
maximum possible period with maximum
resolution and compiler will generate a
message specifying the frequency and
period of PWM, or if using same timer as
previous stream instead of setting to
maximum possible it will be set to the same
as previous stream. If using same timer as
previous stream and frequency is different
compiler will generate an error.

Sets the period of PWM, should not be used
if FREQUENCY is already specified. If
period can't be achieved exactly compiler
will generate a message specifying the exact
period and frequency of PWM. If neither
PERIOD or FREQUENCY is specified, the

PERIOD=x

138

PreProcessor

Purpose:

Examples:

Also See:

period defaults to maximum possible period
with maximum resolution and compiler will
generate a message specifying the
frequency and period of PWM, or if using
same timer as previous stream instead of
setting to maximum possible it will be set to
the same as previous stream. If using same
timer as previous stream and period is
different compiler will generate an error.
BITS=x Sets the resolution of the the duty cycle, if
period or frequency is specified will adjust
the period to meet set resolution and will
generate an message specifying the
frequency and duty of PWM. If period or
frequency not specified will set period to
maximum possible for specified resolution
and compiler will generate a message
specifying the frequency and period of
PWM, unless using same timer as previous
then it will generate an error if resolution is
different then previous stream. If not
specified then frequency, period or previous
stream using same timer sets the resolution.
Selects the duty percentage of PWM, default

sathi if not specified is 50%.

PWM_ON Initialize the PWM in the ON state, default
state if pwm_on or pwm_off is not specified.

PWM_OFF Initalize the PWM in the OFF state.

STREAM=id Associates a stream identifier with the PWM

signal. The identifier may be used in
functions like pwm_set_duty percent().

This directive tells the compiler to setup a PWM on the specified pin
using the specified frequency, period, duty cycle and resolution. The
#USE DELAY directive must appear before this directive can be used.
This directive enables use of built-in functions such as
set_pwm_duty_percent(), set_pwm_frequency(), set_pwm_period(),
pwm_on() and pwm_off().

None

pwm_on(), pwm_off(), pwm_set_frequency(),
pwm_set duty percent(), pwm_set_duty()

139

CCS C Compiler

#use rs232

Syntax: #USE RS232 (options)
Elements: Options are separated by commas and may be:

STREAM=id Associates a stream identifier with
this RS232 port. The identifier may
then be used in functions like
fputc.

BAUD=x Set baud rate to x

XMIT=pin Set transmit pin

RCV=pin Set receive pin
Will generate software serial 1/0

FORCE SW routines even when the UART pins

— are specified.

BRGH10K Allow bad baud rates on chips that

have baud rate problems.
The specified pin will be high during
. transmit. This may be used to enable
ENAEHES 485 transmit.
DEBUGGER Indicates this stream is used to

RESTART_WDT

INVERT

PARITY=X
BITS =X

send/receive data through a CCS ICD
unit. The default pin used is B3, use
XMIT=and RCV= to change the pin
used. Both should be the same pin.

Will cause GETC() to clear the WDT
as it waits for a character.

Invert the polarity of the serial pins
(normally not needed when level
converter, such as the MAX232). May
not be used with the internal UART.

Where xis N, E, or O.

Where x is 5-9 (5-7 may not be used
with the SCI).

140

PreProcessor

The line is not driven high. This is
used for open collector outputs. Bit 6

FLOAT_HIGH in RS232_ERRORS is set if the pin is
not high at the end of the bit time.

ERRORS Used to cause the compiler to keep
receive errors in the variable
RS232_ERRORS and to reset errors
when they occur, and
RS232 BUFFER_ERRORS when
transmit or RECEIVE_BUFFER are
used.

A getc() normally samples data in the
middle of a bit time. This option
causes the sample to be at the start of
a bit time. May not be used with the
UART.

SAMPLE_EARLY

RETURN=pin For FLOAT_HIGH and
MULTI_MASTER this is the pin used
to read the signal back. The default
for FLOAT_HIGH is the XMIT pin and
for MULTI_MASTER the RCV pin.

Uses the RETURN pin to determine if
another master on the bus is
transmitting at the same time. If a
collision is detected bit 6 is set in
RS232_ERRORS and all future
PUTC's are ignored until bit 6 is
cleared. The signal is checked at the
start and end of a bit time. May not be
used with the UART.

MULTI_MASTER

LONG_DATA Makes getc() return an int16 and putc
accept an int16. This is for 9 bit data
formats.

Will cause interrupts to be disabled
when the routines get or put a
character. This prevents character
DISABLE_INTS distortion for software implemented
I/O and prevents interaction between
I/O in interrupt handlers and the main
program when using the UART.

STOP=X To set the number of stop bits (default

141

CCS C Compiler

TIMEOUT=X

SYNC_SLAVE

SYNC_MASTER

SYNC_MATER_CONT

UART1

UART2

NOINIT

ICD

is 1). This works for both UART and
non-UART ports.

To set the time getc() waits for a byte
in milliseconds. If no character comes
in within this time the
RS232_ERRORS is set to 0 as well
as the return value form getc(). This
works for both UART and non-UART
ports.

Makes the RS232 line a synchronous
slave, making the receive pin a clock
in, and the data pin the data in/out.

Makes the RS232 line a synchronous
master, making the receive pin a
clock out, and the data pin the data
in/out.

Makes the RS232 line a synchronous
master mode in continuous receive
mode. The receive pin is set as a
clock out, and the data pin is set as
the data in/out.

Sets the XMIT= and RCV= to the
chips first hardware UART.

Sets the XMIT= and RCV= to the
chips second hardware UART.

No initialization of the UART
peripheral is performed. Useful for
dynamic control of the UART baud
rate or initializing the peripheral
manually at a later point in the
program's run time. If this option is
used, then setup_uart() needs to be
used to initialize the peripheral. Using
a serial routine (such as getc() or
putc()) before the UART is initialized
will cause undefined behavior.
Indicates this stream is used to
send/receive data through a CCS ICD
unit. The default transmit pin is the
PIC's ICSPDAT/PGD pin and the
default receive pin is the PIC's
ICSPCLK/PGC pin. Use XMIT= _and

142

PreProcessor

UART3
UART4

ICD

MAX_ERROR=x

Serial Buffer Options:
RECEIVE_BUFFER=x

TRANSMIT_BUFFER=X

TXISR

NOTXISR

Flow Control Options:

RTS = PIN_xx

RCV= to change the pins used.
Sets the XMIT= and RCV= to the
device's third hardware UART.

Sets the XMIT= and RCV= to the
device's fourth hardware UART.
Indicates this stream uses the ICD in
a special pass through mode to
send/receive serial data to/from PC.
The ICSP clock line is the PIC's
receive pin, usually pin B6, and the
ICSP data line is the PIC's transmit
pin, usually pin B7.

Specifies the max error percentage
the compiler can set the RS232 baud
rate from the specified baud before
generating an error. Defaults to 3% if
not specified.

Size in bytes of UART circular receive
buffer, default if not specified is zero.
Uses an interrupt to receive data,
supports RDA interrupt or external
interrupts.

Size in bytes of UART circular
transmit buffer, default if not specified
is zero.

If TRANSMIT_BUFFER is greater
then zero specifies using TBE
interrupt for transmitting data. Default
is NOTXISR if TXISR or NOTXISR is
not specified. TXISR option can only
be used when using hardware UART.
If TRANSMIT_BUFFER is greater
then zero specifies to not use TBE
interrupt for transmitting data. Default
is NOTXISR if TXISR or NOTXISR is
not specified and XMIT_BUFFER is
greater then zero

Pin to use for RTS flow control. When
using FLOW_CONTROL_MODE this
pin is driven to the active level when it
is ready to receive more data. In
SIMPLEX_MODE the pin is driven to
the active level when it has data to
transmit. FLOW_CONTROL_MODE
can only be use when using
RECEIVE_BUFFER

143

CCS C Compiler

Purpose:

RTS_LEVEL=x Specifies the active level of the RTS
pin, HIGH is active high and LOW is
active low. Defaults to LOW if not
specified.
Pin to use for CTS flow control. In
both FLOW_CONTROL_MODE and
SIMPLEX_MODE this pin is sampled
to see if it clear to send data. If pinis
at active level and there is data to
send it will send next data byte.
CTS_LEVEL=x Specifies the active level of the CTS
pin, HIGH is active high and LOW is
active low. Default to LOW if not
specified
Specifies how the RTS pin is used.
For FLOW_CONTROL_MODE the
RTS pin is driven to the active level
when ready to receive data. Defaults
FLOW_CONTROL_MODE to FLOW_CONTROL_MODE when
neither FLOW_CONTROL_MODE or
SIMPLEX_MODE is specified. If RTS
pin is not specified then this option is
not used.
SIMPLEX_MODE Specifies how the RTS pin is used.
For SIMPLEX_MODE the RTS pin is
driven to the active level when it has
data to send. Defaults to
FLOW_CONTROL_MODE when
neither FLOW_CONTROL_MODE or
SIMPLEX_MODE is specified. If RTS
pin is not specified then this option is
not used.

CTS = PIN_xx

This directive tells the compiler the baud rate and pins used for serial
1/0. This directive takes effect until another RS232 directive is
encountered. The #USE DELAY directive must appear before this
directive can be used. This directive enables use of built-in functions
such as GETC, PUTC, and PRINTF. The functions created with this
directive are exported when using multiple compilation units. To
access the correct function use the stream identifier.

When using parts with built-in SCI and the SCI pins are specified, the
SCI will be used. If a baud rate cannot be achieved within 3% of the
desired value using the current clock rate, an error will be generated.
The definition of the RS232_ERRORS is as follows:

No UART:
e Bit 7 is 9th bit for 9 bit data mode (get and put).

144

PreProcessor

¢ Bit 6 set to one indicates a put failed in float high mode.

With a UART:

e Used only by get:

e Copy of RCSTA register except:

e Bit 0 is used to indicate a parity error.

The definition of the RS232_BUFFER_ERRORS variable is as follows:
o [Bit 0 UART Receive overrun error occurred.

o [[Bit 1 Receive Buffer overflowed.

o [[IBit 2 Transmit Buffer overflowed.

Warning:

The PIC UART will shut down on overflow (3 characters received by
the hardware with a GETC() call). The "ERRORS" option prevents the
shutdown by detecting the condition and resetting the UART.

Examples: #use rs232(baud=9600, xmit=PIN A2,rcv=PIN A3)

Example Files: x_cust.c
Also See: getc(), putc(), printf(), setup uart(), RS2332 1/O overview, kbhit(),
puts(), putc_send(),

rcv_buffer_bytes(), tx_buffer _bytes(), rcv_buffer_full(), tx_buffer_full(),
tx_buffer_available()

#use rtos

(The RTOS is only included with the PCW and PCWH packages.)

The CCS Real Time Operating System (RTOS) allows a PIC micro controller to run
regularly scheduled tasks without the need for interrupts. This is accomplished by a
function (RTOS_RUN()) that acts as a dispatcher. When a task is scheduled to run, the
dispatch function gives control of the processor to that task. When the task is done
executing or does not need the processor anymore, control of the processor is returned to
the dispatch function which then will give control of the processor to the next task that is
scheduled to execute at the appropriate time. This process is called cooperative multi-
tasking.

Syntax: #USE RTOS (options)
Elements: options are separated by comma and may be:
timer=X Where x is 0-4 specifying the timer
used by the RTOS.
minor_cycle=time Where time is a number followed by s, ms,

145

../HelpFile/CCSC/javascript:shortcutlink.click()

CCS C Compiler

Purpose:

Examples:

Also See:

us, ns. This is the longest time any task
will run. Each task's execution rate must
be a multiple of this time. The compiler can
calculate this if it is not specified.

Maintain min, max, and total time used by

statistics each task.

This directive tells the compiler which timer on the PIC to use for
monitoring and when to grant control to a task. Changes to the
specified timer's prescaler will effect the rate at which tasks are
executed.

This directive can also be used to specify the longest time that a task
will ever take to execute with the minor_cycle option. This simply
forces all task execution rates to be a multiple of the minor_cycle
before the project will compile successfully. If the this option is not
specified the compiler will use a minor_cycle value that is the smallest
possible factor of the execution rates of the RTOS tasks.

If the statistics option is specified then the compiler will keep track of
the minimum processor time taken by one execution of each task, the
maximum processor time taken by one execution of each task, and the
total processor time used by each task.

When linking multiple compilation units, this directive must appear
exactly the same in each compilation unit.

#use rtos(timer=0, minor cycle=20ms)

#TASK

#use spi

Syntax:

#USE SPI (options)

Elements:

Options are separated by commas and may be:
MASTER Set the device as the master. (default)
SLAVE Set the device as the slave.
BAUD=n Targ(_at bits per second, default is as fast as
possible.
CLOCK_HIGH=n High time of clock in us (not needed if
BAUD-= is used). (default=0)
Low time of clock in us (not needed if
BAUD= is used). (default=0)

CLOCK_LOW=n

146

PreProcessor

Purpose:

Dl=pin Optional pin for incoming data.

DO=pin Optional pin for outgoing data.

CLK=pin Clock pin.

MODE=n The mode to put the SPI bus.

ENABLE=pin Optional pin to be active during data
transfer.

LOAD=pin Optional pin to be pulsed active after data

is transferred.
DIAGNOSTIC=pin Optional pin to the set high when data is
sampled.

SAMPLE_RISE Sample on rising edge.
SAMPLE_FALL Sample on falling edge (default).
BITS=n Max number of bits in a transfer.

(default=32)

SAMPLE_COUNT=n Number of samples to take (uses majority
vote). (default=1

LOAD_ACTIVE=n Active state for LOAD pin (0, 1).

ENABLE_ACTIVE=n Active state for ENABLE pin (0, 1).
(default=0)

IDLE=n Inactive state for CLK pin (0, 1). (default=0)

ENABLE_DELAY=n Time in us to delay after ENABLE is
activated. (default=0)

DATA_HOLD=n Time between data change and clock

change
LSB_FIRST LSB is sent first.
MSB_FIRST MSB is sent first. (default)
STREAM=id Specify a stream name for this protocol.
SPI1 Use the hardware pins for SPI Port 1
SPI2 Use the hardware pins for SPI Port 2
FORCE SW Use a software implemgr_wtation even when
— hardware pins are specified
FORCE_HW Use the pic hardware SPI.
NOINIT Do not initialize the hardware SPI Port

The SPI library contains functions to implement an SPI bus. After
setting all of the proper parameters in #USE SPI, the spi_xfer()
function can be used to both transfer and receive data on the SPI bus.

The SPI1 and SPI2 options will use the SPI hardware onboard the
PIC. The most common pins present on hardware SPI are: DI, DO,
and CLK. These pins don’t need to be assigned values through the
options; the compiler will automatically assign hardware-specific
values to these pins. Consult your PIC’s data sheet as to where the
pins for hardware SPI are. If hardware SPI is not used, then software
SPI will be used. Software SPI is much slower than hardware SPI, but
software SPI can use any pins to transfer and receive data other than
just the pins tied to the PIC’s hardware SPI pins.

147

CCS C Compiler

Examples:

Example Files:

Also See:

The MODE option is more or less a quick way to specify how the
stream is going to sample data. MODE=0 sets IDLE=0 and
SAMPLE_RISE. MODE=1 sets IDLE=0 and SAMPLE_FALL.
MODE-=2 sets IDLE=1 and SAMPLE_FALL. MODE=3 sets IDLE=1
and SAMPLE_RISE. There are only these 4 MODEs.

SPI cannot use the same pins for DI and DO. If needed, specify two
streams: one to send data and another to receive data.

The pins must be specified with DI, DO, CLK or SPIx, all other options
are defaulted as indicated above.

#use spi (DI=PIN Bl, DO=PIN BO, CLK=PIN B2, ENABLE=PIN B4,
BITS=16)

// uses software SPI

#use Spi(FORCEiHW, BITS=16, stream=SPI_ STREAM)
// uses hardware SPI and gives this stream the name

SPI_STREAM

None

spi_xfer()

#use standard _io

Syntax:

#USE STANDARD_IO (port)

Elements:

Purpose:

Examples:

Example Files:

Also See:

portisA,B,C,D, E, F, G, H,Jor ALL

This directive affects how the compiler will generate code for input and
output instructions that follow. This directive takes effect until another
#USE XXX_IO directive is encountered. The standard method of doing
I/0O will cause the compiler to generate code to make an I/O pin either
input or output every time it is used. On the 5X processors this
requires one byte of RAM for every port set to standard 1/0.
Standard_io is the default /O method for all ports.

When linking multiple compilation units be aware this directive only
applies to the current compilation unit.

#use standard io(R)
ex_cust.c

#USE FAST 10, #USE FIXED 10, General Purpose 1/0O

148

../HelpFile/CCSC/javascript:shortcutlink2.click()

PreProcessor

#use timer
Syntax: #USE TIMER (options)
Elements: TIMER=x

Sets the timer to use as the tick timer. x is a valid timer that the PIC
has. Default value is 1 for Timer 1.

TICK=xx

Sets the desired time for 1 tick. xx can be used with ns(nanoseconds),
us (microseconds), ms (milliseconds), or s (seconds). If the desired
tick time can't be achieved it will set the time to closest achievable
time and will generate a warning specifying the exact tick time. The
default value is 1us.

BITS=x

Sets the variable size used by the get_ticks() and set_ticks() functions
for returning and setting the tick time. x can be 8 for 8 bits, 16 for 16
bits or 32 for 32bits. The default is 32 for 32 bits.

ISR

Uses the timer's interrupt to increment the upper bits of the tick timer.
This mode requires the the global interrupt be enabled in the main
program.

NOISR

The get_ticks() function increments the upper bits of the tick timer.
This requires that the get_ticks() function be called more often then
the timer's overflow rate. NOISR is the default mode of operation.

STREAM=id
Associates a stream identifier with the tick timer. The identifier may be
used in functions like get_ticks().

DEFINE=id

Creates a define named id which specifies the number of ticks that will
occur in one second. Default define name if not specified is
TICKS_PER_SECOND. Define name must start with an ASCII letter
'‘A' to 'Z', an ASCII letter 'a’ to 'z' or an ASCII underscore ('_").

COUNTER or COUNTER=x
Sets up specified timer as a counter instead of timer. x specifies the
prescallar to setup counter with, default is1 if x is not specified

149

CCS C Compiler

Purpose:

Examples:

Example Files:
Also See:

specified. The function get_ticks() will return the current count and the
function set_ticks() can be used to set count to a specific starting value
or to clear counter.

This directive creates a tick timer using one of the PIC's timers. The
tick timer is initialized to zero at program start. This directive also
creates the define TICKS_PER_SECOND as a floating point number,
which specifies that number of ticks that will occur in one second.

#USE TIMER (TIMER=1, TICK=1lms,BITS=16,NOISR)

unsigned intl6 tick difference (unsigned intl6é current,
unsigned intl6 previous) {
return (current - previous);

}

void main (void) {
unsigned intlé current tick, previous_tick;
current tick = previous tick = get ticks();
while (TRUE) {
current tick = get ticks();
if (tick difference (current tick, previous tick) >
1000) |
output toggle (PIN BO);
previous tick = current tick;

}

None
get_ticks(), set_ticks()

#use touchpad

Syntax:

#USE TOUCHPAD (options)

Elements:

RANGE=x

Sets the oscillator charge/discharge current range. If x is L, current is
nominally 0.1 microamps. If x is M, current is nominally 1.2
microamps. If x is H, current is nominally 18 microamps. Default value
is H (18 microamps).

THRESHOLD=x

X is a number between 1-100 and represents the percent reduction in
the nominal frequency that will generate a valid key press in software.
Default value is 6%.

150

PreProcessor

Purpose:

Examples:

Example Files:
Also See:

SCANTIME=xxMS

xx is the number of milliseconds used by the microprocessor to scan
for one key press. If utilizing multiple touch pads, each pad will use xx
milliseconds to scan for one key press. Default is 32ms.

PIN=char

If a valid key press is determined on “PIN”, the software will return the
character “char” in the function touchpad_getc(). (Example:
PIN_BO="A")

SOURCETIME=xxus (CTMU only)
xx is thenumber of microseconds each pin is sampled for by ADC
during each scan time period. Default is 10us.

This directive will tell the compiler to initialize and activate the
Capacitive Sensing Module (CSM)or Charge Time Measurement Unit
(CTMU) on the microcontroller. The compiler requires use of the
TIMERO and TIMER1 modules for CSM and Timerl ADC modules for
CTMU, and global interrupts must still be activated in the main
program in order for the CSM or CTMU to begin normal operation. For
most applications, a higher RANGE, lower THRESHOLD, and higher
SCANTIME will result better key press detection. Multiple PIN's may
be declared in “options”, but they must be valid pins used by the CSM
or CTMU. The user may also generate a TIMERO ISR with TIMERQ's
interrupt occuring every SCANTIME milliseconds. In this case, the
CSM's or CTMU's ISR will be executed first.

#USE TOUCHPAD (THRESHOLD=5, PIN D5='5", PIN7B0='C')
void main (void) {

char c;

enable interrupts (GLOBAL) ;

while (1) {
c = TOUCHPAD_GETC(); //will wait until a pin is

detected

} //if PIN BO is pressed, c will
have 'C'
} //if PIN D5 is pressed, c will
have '5'
None

touchpad_state(), touchpad getc(), touchpad_hit()

151

CCS C Compiler

#warning

Syntax: #WARNING text

Elements: text is optional and may be any text
Forces the compiler to generate a warning at the location this directive
appears in the file. The text may include macros that will be expanded
for the display. This may be used to see the macro expansion. The
command may also be used to alert the user to an invalid compile time

Purpose: situation.
To prevent the warning from being counted as a warning, use this
syntax: #warning/information text

Examples: #if BUFFER SIZE < 32
#warning Buffer Overflow may occur
#endif

Example Files: £% Pep.t

Also See: #ERROR

#word

Syntax: #WORD id = x

Elements: id is a valid C identifier,
X is a C variable or a constant
If the id is already known as a C variable then this will locate the
variable at address x. In this case the variable type does not change
from the original definition. If the id is not known a new C variable is
created and placed at address x with the type int16

Purpose:
Warning: In both cases memory at x is not exclusive to this
variable. Other variables may be located at the same location. In fact
when x is a variable, then id and x share the same memory location.

Examples: #word data = 0x0800

struct {
int lowerByte : 8;

152

../HelpFile/CCSC/javascript:shortcutlink.click()

PreProcessor

int upperByte : 8;
} control word;
#word control word = 0x85

control word.upperByte = 0x42;

Example Files: None
Also See: #bit, #byte, #locate, #reserve, Named Regqisters, Type Specifiers,
Type Qualifiers, Enumerated Types, Structures & Unions, Typedef

#zero_ram
Syntax: #ZERO_RAM
Elements: None
This directive zero's out all of the internal registers that may be used to
Purpose: hold variables before program execution begins.
Examples: #zero ram
void main() {
}
Example Files: x_cust.c
Also See: None

153

../HelpFile/CCSC/javascript:shortcutlink.click()

BUILT-IN FUNCTIONS

BUILT-IN FUNCTIONS

The CCS compiler provides a lot of built-in functions to access and use the PIC
microcontroller's peripherals. This makes it very easy for the users to configure and use
the peripherals without going into in depth details of the registers associated with the
functionality. The functions categorized by the peripherals associated with them are listed
on the next page. Click on the function name to get a complete description and parameter
and return value descriptions.

abs()

Syntax: value = abs(x)
Parameters: X is a signed 8, 16, or 32 bit int or a float
Returns: Same type as the parameter.
Function: Computes the absolute value of a number.
Availability: All devices
Requires: #INCLUDE <stdlib.h>
signed int target,actual;
Examples: erréJ‘c‘: abs (target-actual) ;
Example Files: None
Also See: labs()

155

CCS C Compiler

sin() cos() tan() asin() acos()
atan() sinh() cosh() tanh() atan2()

Syntax: val = sin (rad)
val = cos (rad)
val = tan (rad)
rad = asin (val)
radl = acos (val)
rad = atan (val)
rad2=atan2(val, val)
result=sinh(value)
result=cosh(value)
result=tanh(value)

Parameters: rad is a float representing an angle in Radians -2pi to 2pi.
val is a float with the range -1.0 to 1.0.
Value is a float
rad is a float representing an angle in Radians -pi/2 to pi/2
val is a float with the range -1.0 to 1.0.

Returns: radl is a float representing an angle in Radians 0 to pi

rad2 is a float representing an angle in Radians -pi to pi
Result is a float

Function: These functions perform basic Trigonometric functions.

sin returns the sine value of the parameter (measured in
radians)

cos returns the cosine value of the parameter (measured in
radians)

tan returns the tangent value of the parameter (measured in
radians)

asin returns the arc sine value in the range [-pi/2,+pi/2] radians

acos returns the arc cosine value in the range[0,pi] radians

atan returns the arc tangent value in the range [-pi/2,+pi/2]
radians

atan2 returns the arc tangent of y/x in the range [-pi,+pi] radians

sinh returns the hyperbolic sine of x

cosh returns the hyperbolic cosine of x

tanh returns the hyperbolic tangent of x

Note on error handling:
If "errno.h" is included then the domain and range errors are stored in the
errno variable. The user can check the errno to see if an error has occurred

156

Built-in Functions

Availability:
Requires:

Examples:

Example Files:

and print the error using the perror function.

Domain error occurs in the following cases:
asin: when the argument not in the range[-1,+1]
acos: when the argument not in the range[-1,+1]
atan2: when both arguments are zero

Range error occur in the following cases:

cosh: when the argument is too large

sinh: when the argument is too large

All devices

#INCLUDE <math.h>

float phase;

// Output one sine wave

for (phase=0; phase<2*3.141596; phase+=0.01)
set analog voltage(sin(phase)+1l);

ex_tank.c

log(), 10g10(), exp(), pow(), sqrt()

Also See:
adc_done()
Syntax: value = adc_done();
Parameters: None
channel is an optional parameter for specifying the channel to check if the
conversion is done. If not specified will use channel specified in the last
call to set_adc_channel(), read_adc() or adc_done(). Only available for
dsPIC33EPxxGSxxx family.
A short int. TRUE if the A/D converter is done with conversion, FALSE if it
Returns: is still busy.
Function: Can be polled to determine if the A/D has valid data.
Availability: Only available on devices with built in analog to digital converters
Requires: None
intlé value;
Examples:

setup adc ports (sANO|sAN1l, VSS VDD);

157

../HelpFile/CCSC/javascript:shortcutlink.click()

CCS C Compiler

setup_adc (ADC_CLOCK_DIV_4|ADC TAD MUL 8);
set_adc_channel (0) ;
read adc (ADC_START ONLY);

intl done = adc _done();
while (!done) {

done = adc_done();
}
value = read adc (ADC READ ONLY) ;
printf ("A/C value = %LX\n\r”, value);
}

Example Files: None

setup_adc(), set_adc_channel(), setup_adc_ports(), read adc(), ADC
Also See: Overview

adc_read()

Syntax: result=adc_read(register)

Parameters: register - ADC register to read:
o ADC_RESULT
o ADC_ACCUMULATOR
° ADC_FILTER

int8 or in16 read from the specified register. Return size depends on which
register is being read. For example, ADC_RESULT register is 16 bits and

Returns: ADC_COUNT register is 8-bits.
Function: Reads one of the Analog-to-Digital Converter with Computation (ADC2)
Module registers

S All devices with an ADC2 Module
Availability:
Requires: Constants defined in the device's .h file

i FilteredResult=adc read(ADC FILTER) ;

Examples: - -
Also See: ADC Overview, setup_adc(), setup_adc_ports(), set_adc_channel(),

read adc(),
#DEVICE, adc_write(), adc_status(), set_adc_trigger()

158

Built-in Functions

adc_status()

Syntax: status=adc_status()
Parameters: None
Returns: int8 value of the ADSTAT register
Function: Read the current value of the ADSTAT register of the Analog-to-Digital
Converter with Computation (ADC2) Module.
Availability: All devices with an ADC2 Module
Requires: Nothing
while((adc_status() & ADC UPDATING)==0);
Examples:
Average=adc read (ADC FILTER);
Also See: ADC Overview, setup_adc(), setup_adc_ports(), set_adc_channel(),
read adc(),
#DEVICE, adc _read(), adc_write(), set adc_trigger()
adc_write()
Syntax: adc_write(register, value)
Parameters: register - ADC register to write:
. ADC_REPEAT
. ADC_SET_POINT
. ADC_LOWER_THRESHOLD
o ADC_UPPER_THRESHOLD
Returns: undefined
Function: Write one of the Analog-to-Digital Converter with Computation (ADC2)
Module registers.
Availability: All devices with an ADC2 Module
Requires: Constants defined in the device's .h file
. adc write (ADC SET POINT, 300);
Examples: - ==
Also See: ADC Overview, setup_adc(), setup_adc_ports(), set_adc_channel(),

read adc(), #DEVICE, adc_read(), adc_status(), set_adc_trigger()

159

CCS C Compiler

assert()

Syntax: assert (condition);

Parameters: condition is any relational expression

Returns: Nothing

Function: This function tests the condition and if FALSE will generate an error
message on STDERR (by default the first USE RS232 in the
program). The error message will include the file and line of the
assert(). No code is generated for the assert() if you #define
NODEBUG. In this way you may include asserts in your code for testing
and quickly eliminate them from the final program.

Availability: All devices

Requires: assert.h and #USE RS232
assert (number of entries<TABLE SIZE);

. // If number of entries is >= TABLE SIZE then
Examples: — =

Example Files:

// the following is output at the RS232:

// Assertion failed, file myfile.c, line 56

None

#USE RS232, RS232 I/0O Overview

Also See:

atoe

Syntax: atoe(string);

Parameters: string is a pointer to a null terminated string of characters.

Returns: Result is a floating point number

Function: Converts the string passed to the function into a floating point
representation. If the result cannot be represented, the behavior is
undefined. This function also handles E format numbers

Availability: All devices

160

Built-in Functions

Requires:

Examples:

#INCLUDE <stdlib.h>

char string [10];
float32 x;

strcpy (string, "12E3");
x = atoe(string);
// x is now 12000.00

Example Files: None

Also See: atoi(), atol(), atoi32(), atof(), printf()

atof()

Syntax: result = atof (string)

Parameters: string is a pointer to a null terminated string of characters.

Returns: Result is a floating point number

Function: Converts the string passed to the function into a floating point
representation. If the result cannot be represented, the behavior is
undefined.

Availability: All devices

Requires: #INCLUDE <stdlib.h>
char string [10];
float x;

Examples: strcpy (string, "123.456");

Example Files:

Also See:

x = atof (string);
// x is now 123.456

ex_tank.c

atoi(), atol(), atoi32(), printf()

161

../HelpFile/CCSC/javascript:shortcutlink.click()

CCS C Compiler

pin_select()

Syntax:

pin_select(peripheral_pin, pin, [unlock],[lock])

Parameters:

Returns:
Availability:

Requires:

Examples:

peripheral_pin — a constant string specifying which peripheral pin to
map the specified pin to. Refer to #pin_select for all available strings.
Using “NULL?” for the peripheral_pin parameter will unassign the
output peripheral pin that is currently assigned to the pin passed for
the pin parameter.

pin — the pin to map to the specified peripheral pin. Refer to device's
header file for pin defines. If the peripheral_pin parameter is an
input, passing FALSE for the pin parameter will unassign the pin that
is currently assigned to that peripheral pin.

unlock — optional parameter specifying whether to perform an unlock
sequence before writing the RPINRx or RPORX register register
determined by peripheral_pin and pin options. Default is TRUE if not
specified. The unlock sequence must be performed to allow writes to
the RPINRx and RPORX registers. This option allows calling
pin_select() multiple times without performing an unlock sequence
each time.

lock — optional parameter specifying whether to perform a lock
sequence after writing the RPINRx or RPORX registers. Default is
TRUE if not specified. Although not necessary it is a good idea to
lock the RPINRx and RPORX registers from writes after all pins have
been mapped. This option allows calling pin_select() multiple times
without performing a lock sequence each time.

Nothing.

On device with remappable peripheral pins.

Pin defines in device's header file.

pin_select(“U2TX",PIN_BO0);

/IMaps PIN_BO to U2TX //peripheral pin, performs
unlock //and lock sequences.

pin_select(*U2TX”,PIN_B0, TRUE,FALSE);

/IMaps PIN_BO to U2TX //peripheral pin and performs
/lunlock sequence.

pin_select("U2RX’,PIN_B1,FALSE, TRUE);

162

Built-in Functions

/IMaps PIN_B1 to U2RX //peripheral pin and performs

lock //[sequence.
Example Files: None.
Also See: #pin_select

atoi() atol() atoi32()

Syntax: ivalue = atoi(string)
or

Ivalue = atol(string)
or

i32value = atoi32(string)

Parameters: string is a pointer to a null terminated string of characters.

ivalue is an 8 bit int.
Ivalue is a 16 bit int.

Returns: i32value is a 32 bit int.

Function: Converts the string passed to the function into an int
representation. Accepts both decimal and hexadecimal argument. If
the result cannot be represented, the behavior is undefined.

Availability: All devices

Requires: #INCLUDE <stdlib.h>
char string[10];
int x;

Examples: strcpy (string, "123");

x = atoi (string);
// x is now 123
Example Files: input.c
Also See: printf()

163

../HelpFile/CCSC/javascript:shortcutlink.click()

CCS C Compiler

at_clear_interrupts()

Syntax: at_clear_interrupts(interrupts);
Parameters: interrupts - an 8-bit constant specifying which AT interrupts to
disable. The constants are defined in the device's header file as:
- AT_PHASE_INTERRUPT
AT_MISSING_PULSE_INTERRUPT
AT_PERIOD_INTERRUPT
AT_CC3_INTERRUPT
AT_CC2_INTERRUPT
AT_CC1_INTERRUPT
Returns: Nothing
Function: To disable the Angular Timer interrupt flags. More than one interrupt
can be cleared at a time by or'ing multiple constants together in a
single call, or calling function multiple times for each interrupt to clear.
Availability: All devices with an AT module.
Requires: Constants defined in the device's header file
#INT-AT1
voidl isr(void)
[
if (at_interrupt active (AT PERIOD INTERRUPT))
[
handle period interrupt();
at_clear_interrupts (AT_PERIOD INTERRUPT) ;
Examples: 1

Example Files:

Also See:

]

if (at_interrupt (active (AT PHASE INTERRUPT) ;
[

handle phase interrupt();

at clear interrupts (AT PHASE INTERRUPT) ;

None

at

set_resolution(), at_get resolution(),

at

set_missing_pulse delay(), at get missing pulse delay(),

at

get_period(), at_get_phase_counter(), at_set_set_point(),

at

get_set_point(), at_get_set_point_error(), at_enable_interrupts(),

at

disable_interrupts(), at_interrupt_active(), at_setup_cc(),

at

set_compare time(), at_get capture(), at_get_status(), setup_at()

164

Built-in Functions

at_disable_interrupts()

Syntax:

at_disable_interrupts(interrupts);

Parameters:

Returns:

Function:

Availability:
Requires:

Examples:

Example Files:

Also See:

interrupts - an 8-bit constant specifying which AT interrupts to
disable. The constants are defined in the device's header file as:
- AT_PHASE_INTERRUPT
AT_MISSING_PULSE_INTERRUPT
AT_PERIOD_INTERRUPT
AT_CC3_INTERRUPT
AT_CC2_INTERRUPT
AT _CC1_INTERRUPT

Nothing

To disable the Angular Timer interrupts. More than one interrupt can
be disabled at a time by or'ing multiple constants together in a single
call, or calling function multiple times for eadch interrupt to be
disabled.

All devices with an AT module.

Constants defined in the device's header file

at disable interrupts (AT PHASE INTERRUPT) ;
at_disable interrupts (AT PERIOD INTERRUPT|AT CCl INTERRUP
T):

None

at_set resolution(), at_get _resolution(),

at_set _missing_pulse_delay(), at_get missing_pulse delay(),
at_get period(), at_get phase counter(), at_set set _point(),

at _get set point(), at_get_set_point_error(), at_enable interrupts(),
at_clear_interrupts(), at_interrupt_active(), at_setup_cc(),

at_set compare_time(), at_get _capture(), at_get_status(), setup_at()

at_enable interrupts()

Syntax:

at_enable_interrupts(interrupts);

Parameters:

interrupts - an 8-bit constant specifying which AT interrupts to
enable. The constants are defined in the device's header file as:

165

CCS C Compiler

Returns:
Function:

Availability:
Requires:

Examples:

Example Files:

Also See:

AT_PHASE_INTERRUPT
AT_MISSING_PULSE_INTERRUPT
AT_PERIOD_INTERRUPT
AT_CC3_INTERRUPT
AT_CC2_INTERRUPT
AT_CC1_INTERRUPT

Nothing

To enable the Angular Timer interrupts. More than one interrupt can
be enabled at a time by or'ing multiple constants together in a single
call, or calling function multiple times for each interrupt to be enabled.

All devices with an AT module.

Constants defined in the device's header file

at enable interrupts (AT PHASE INTERRUPT) ;
at enable interrupts (AT PERIOD INTERRUPT|AT CCl INTERRUPT
)i

None

setup_at(), at_set_resolution(), at_get_resolution(),
at_set_missing_pulse_delay(), at_get_missing_pulse_delay(),
at_get_phase_counter(), at_set_set_point(), at_get_set_point(),
at_get_set_point(), at_get_set_point_error(), at_disable_interrupts(),
at_clear_interrupts(), at_interrupt_active(), at_setup_cc(),
at_set_compare_time(), at_get_capture(), at_get_status()

at_get_capture()

Syntax: result=at_get_capture(which);;

Parameters: which - an 8-bit constant specifying which AT Capture/Compare
module to get the capture time from, can be 1, 2 or 3.

Returns: A 16-bit integer

Function: To get one of the Angular Timer Capture/Compare modules capture
time.

Availability: All devices with an AT module.

166

Built-in Functions

Requires:

Examples:

Example Files:

Also See:

Nothing

resultl=at get capture(l);
result2=at get capture(2);

None

setup_at(), at_set_resolution(), at_get_resolution(),
at_set_missing_pulse_delay(), at_get_missing_pulse_delay(),
at_get_phase_counter(), at_set_set_point(), at_get_set_point(),
at_get_set_point(), at_get_set_point_error(), at_enable_interrupts(),
at_disable_interrupts(), at_clear_interrupts(), at_interrupt_active(),
at_setup_cc(), at_set_compare_time(), at_get_status()

at_get _missing_pulse_delay()

Syntax: result=at_get_missing_pulse_delay();
Parameters: None.
Returns: A 16-bit integer
Function: To setup the Angular Timer Missing Pulse Delay
Availability: All devices with an AT module.
Requires: Nothing

result=at get missing pulse delay();
Examples:

Example Files:

Also See:

None

at_set resolution(), at_get resolution(),

at_set _missing_pulse delay(), at_get period(),

at_get phase counter(), at set _set point(), at get set point(),
at_get_set_point_error(), at_enable_interrupts(),
at_disable_interrupts(), at_clear_interrupts(), at_interrupt_active(),
at_setup_cc(), at_set_compare_time(), at_get_capture(),

at_get_status(), setup_at()

at_get_period()

Syntax:

result=at_get_period();

167

CCS C Compiler

Parameters:

Returns:
Function:

Availability:
Requires:

Examples:

Example Files:

Also See:

None.

A 16-bit integer. The MSB of the returned value specifies whether
the period counter rolled over one or more times. 1 - counter rolled
over at least once, 0 - value returned is valid.

To get Angular Timer Measured Period
All devices with an AT module.

Nothing

result=at get period();

None

at_set _resolution(), at_get_resolution(),

at_set_missing pulse delay(), at_get_missing pulse delay(),
at_get phase counter(), at_set set point(), at_get set point(),
at_get_set_point_error(), at_enable_interrupts(),

at_disable interrupts(), at_clear_interrupts(), at_interrupt_active(),
at_setup_cc(), at_set_compare_time(), at_get_capture(),

at get status(), setup_at()

at_get _phase_counter()

Syntax: result=at_get_phase_counter();

Parameters: None.

Returns: A 16-bit integer.

Function: To get the Angular Timer Phase Counter

Availability: All devices with an AT module.

Requires: Nothing
result=at get phase counter();

Examples:

Example Files:

Also See:

None

at_set_resolution(), at_get resolution(),

168

Built-in Functions

at_set _missing pulse delay(), at_get missing_pulse delay(),
at_get period(), at_set_set _point(), at_get set point(),
at_get_set_point_error(), at_enable_interrupts(),

at_disable interrupts(), at_clear_interrupts(), at_interrupt_active(),
at_setup _cc(), at_set_compare_time(), at_get_capture(),
at_get_status(), setup_at()

at_get_resolution()

Syntax: result=at_get_resolution();

Parameters: None

Returns: A 16-bit integer

Function: To setup the Angular Timer Resolution

Availability: All devices with an AT module.

Requires: Nothing
result=at get resolution();

Examples:

Example Files:

Also See:

None

at_set _resolution(), at_set_missing_pulse_delay(),

at_get _missing_pulse_delay(), at_get period(),

at_get phase_counter(), at_set_set point(), at_get_set_point(),
at_get_set_point_error(), at_enable_interrupts(),

at_disable interrupts(), at_clear_interrupts(), at_interrupt_active(),
at_setup_cc(), at_set_compare_time(), at_get capture(),
at_get_status(), setup_at()

at_get_set_point()

Syntax: result=at_get_set_point();
Parameters: None

Returns: A 16-bit integer

Function: To get the Angular Timer Set Point

169

CCS C Compiler

Availability:
Requires:

Examples:
Example Files:

Also See:

All devices with an AT module.

Nothing
result=at get set point();
None

at_set resolution(), at_get resolution(),

at_set_missing pulse delay(), at_get _missing pulse delay(),
at_get period(), at_get phase counter(), at_set_set_point(),
at_get_set_point_error(), at_enable_interrupts(),
at_disable_interrupts(), at_clear_interrupts(), at_interrupt_active(),
at_setup_cc(), at_set_compare_time(), at_get_capture(),

at get status(), setup_at()

at_get_set _point_error()

Syntax: result=at_get_set_point_error();

Parameters: None

Returns: A 16-bit integer

Function: To get the Angular Timer Set Point Error, the error of the measured
period value compared to the threshold setting.

Availability: All devices with an AT module.

Requires: Nothing

Examples: result=at get set point error();

Example Files:

Also See:

None

at_set_resolution(), at_get_resolution(),

at_set_missing_pulse_delay(), at_get _missing_pulse_delay(),

at_get period(), at_get_phase_counter(), at_set_set_point(),

at_get_set point(), at_enable_interrupts(), at_disable interrupts(),

at_clear_interrupts(), at_interrupt_active(), at_setup_cc(),

at_set compare time(), at_get capture(), at_get status(), setup_at()

170

Built-in Functions

at_get_status()

Syntax: result=at_get_status();

Parameters: None
An 8-bit integer. The possible results are defined in the device's
header file as:

Returns: AT_STATUS_PERIOD_AND_PHASE_VALID

AT_STATUS_PERIOD_LESS_THEN_PREVIOUS

Function: To get the status of the Angular Timer module.

Availability: All devices with an AT module.

Requires: Nothing
if ((at_get status () &AT STATUS PERIOD AND PHASE VALID)==
AT STATUS PERIOD AND PHASE VALID
[

Examples: Period=at_get period();

Example Files:

Also See:

Phase=at get phase();
]

None

at_set resolution(), at_get _resolution(),

at_set _missing_pulse_delay(), at_get missing_pulse_delay(),
at_get period(), at_get phase counter(), at_set set _point(),

at _get set point(), at_get_set_point_error(), at_enable interrupts(),
at_disable_interrupts(), at_clear_interrupts(), at_interrupt_active(),
at_setup_cc(), at_set_compare_time(), at_get_capture(), setup_at()

at_interrupt_active()

Syntax:

result=at_interrupt_active(interrupt);

Parameters:

interrupts - an 8-bit constant specifying which AT interrupts to check
if its flag is set. The constants are defined in the device's header file
as:

AT_PHASE_INTERRUPT

AT_MISSING_PULSE_INTERRUPT

171

CCS C Compiler

AT_PERIOD_INTERRUPT
AT_CC3_INTERRUPT
AT_CC2_INTERRUPT
AT_CC1_INTERRUPT

TRUE if the specified AT interrupt's flag is set, interrupt is active, or

Returns: FALSE if the flag is clear, interrupt is not active.
Function: To check if the specified Angular Timer interrupt flag is set.
Availability: All devices with an AT module.
Requires: Constants defined in the device's header file
#INT-AT1

voidl isr(void)
[
if (at_interrupt active (AT PERIOD INTERRUPT))
[
handle period interrupt();
at clear interrupts (AT PERIOD INTERRUPT) ;

Examples:]
if (at_interrupt (active (AT _PHASE INTERRUPT) ;
[
handle phase interrupt();
at clear interrupts (AT PHASE INTERRUPT) ;
]
]
Example Files: None

at_set resolution(), at_get _resolution(),
at_set _missing_pulse_delay(), at_get missing_pulse_delay(),
at_get period(), at_get_phase_counter(), at_set_set_point(),

Also See: at_get set point(), at_get_set_point_error(), at_enable_interrupts(),
at_disable_interrupts(), at_clear_interrupts(), at_setup_cc(),
at_set_compare_time(), at_get_capture(), at_get_status(), setup_at()

at_set_compare_time()

Syntax: at_set_compare_time(which, compare_time);

Parameters: which - an 8-bit constant specifying which AT Capture/Compare
module to set the compare time for, can be 1, 2, or 3.

172

Built-in Functions

Returns:

Function:

Availability:
Requires:

Examples:

Example Files:

Also See:

compare_time - a 16-bit constant or variable specifying the value to
trigger an interrupt/ouput pulse.

Nothing

To set one of the Angular Timer Capture/Compare module's compare
time.

All devices with an AT module.

Constants defined in the device's header file

at set compare time (1, 0x1FF);
at set compare time (3,compare time);

None

at_set _resolution(), at_get_resolution(),

at_set_missing pulse delay(), at_get_missing pulse delay(),
at_get period(), at_get phase counter(), at_set _set point(),
at_get set point(), at_get_set_point_error(), at enable_interrupts(),
at_disable interrupts(), at_clear_interrupts(), at_interrupt_active(),
at_setup_cc(), at_get_capture(), at_get_status(), setup_at()

at_set_missing _pulse delay()

Syntax: at_set_missing_pulse_delay(pulse_delay);

Parameters: pulse_delay - a signed 16-bit constant or variable to set the missing
pulse delay.

Returns: Nothing

Function: To setup the Angular Timer Missing Pulse Delay

Availability: All devices with an AT module.

Requires: Nothing
at set missing pulse delay(pulse delay);

Examples:

Example Files:

Also See:

None

at_set_resolution(), at_get resolution(),

173

CCS C Compiler

at_get_missing pulse delay(), at _get period(),

at_get phase counter(), at_set _set point(), at_get set point(),
at_get_set_point_error(), at_enable_interrupts(),

at_disable interrupts(), at_clear_interrupts(), at_interrupt_active(),
at_setup _cc(), at_set_compare_time(), at_get_capture(),

at_get status(), setup_at()

at_set_resolution()

Syntax: at_set_resolution(resolution);
Parameters: resolution - a 16-bit constant or variable to set the resolution.
Returns: Nothing
Function: To setup the Angular Timer Resolution
Availability: All devices with an AT module.
Requires: Nothing
at_set resolution(resolution);
Examples:
Example Files: None
at_get_resolution(), at_set_missing_pulse_delay(),
at_get missing_pulse_delay(), at_get_period(),
at_get phase_counter(), at_set_set_point(), at_get_set_point(),
Also See: at_get_set_point_error(), at_enable_interrupts(),

at_disable interrupts(), at_clear_interrupts(), at_interrupt _active(),
at_setup _cc(), at_set_compare_time(), at_get capture(),
at_get_status(), setup_at()

at_set_set point()

Syntax: at_set_set_point(set_point);

Parameters: set_point - a 16-bit constant or variable to set the set point. The set
point determines the threshold setting that the period is compared
against for error calculation.

174

Built-in Functions

Returns:
Function:

Availability:
Requires:

Examples:

Example Files:

Also See:

Nothing
To get the Angular Timer Set Point
All devices with an AT module.

Nothing

at _set set point(set point);

None

at_set resolution(), at_get resolution(),
at_set_missing_pulse_delay(), at_get missing_pulse_delay(),
at_get period(), at_get _phase_counter(), at_get_set_point(),
at_get_set_point_error(), at_enable_interrupts(),
at_disable_interrupts(), at_clear_interrupts(), at_interrupt_active(),
at_setup _cc(), at_set compare _time(), at_get_capture(),
at_get_status(), setup_at()

at_setup_cc()

Syntax:

at_setup_cc(which, settings);

Parameters:

Returns:

Function:

Availability:

which - an 8-bit constant specifying which AT Capture/Compare to
setup, can be 1, 2 or 3.

settings - a 16-bit constant specifying how to setup the specified AT
Capture/Compare module. See the device's header file for all
optlons Some of the typical options include:

AT_CC_ENABLED

AT_CC_DISABLED

AT_CC_CAPTURE_MODE

AT_CC_COMPARE_MODE

AT_CAPTURE_FALLING_EDGE

AT_CAPTURE_RISING_EDGE

Nothing

To setup one of the Angular Timer Capture/Compare modules to the
specified settings.

All devices with an AT module.

175

CCS C Compiler

Requires:

Examples:

Example Files:

Constants defined in the device's header file

at_setup cc(1,AT CC ENABLED|AT CC CAPTURE MODE |
AT CAPTURE FALLING EDGE|AT CAPTURE INPUT ATCAP);

at setup cc(2,AT CC ENABLED|AT CC CAPTURE MODE |
AT CC ACTIVE HIGH);

None

at_set resolution(), at_get_resolution(),
at_set_missing_pulse_delay(), at_get missing_pulse_delay(),
at_get period(), at_get phase counter(), at_set_set_point(),

Also See: at get set point(), at_get_set_point_error(), at_enable_interrupts(),
at disable_interrupts(), at clear_interrupts(), at_interrupt_active(),
at set compare_time(), at_get capture(), at_get status(), setup_at()

bit_clear()

Syntax: bit_clear(var, bit)

Parameters: var may be a any bit variable (any Ivalue)
bit is a number 0- 31 representing a bit number, 0 is the least

significant bit.

Returns: undefined

Function: Simply clears the specified bit (0-7, 0-15 or 0-31) in the given

variable. The least significant bit is 0. This function is the similar to:
var &= ~(1<<bit);

Availability: All devices

Requires: Nothing

int x;
x=5;
Examples: bit clear(x,2);

Example Files:

Also See:

// x is now 1

€ex_patg.c

bit_set(), bit_test()

176

../HelpFile/CCSC/javascript:shortcutlink.click()

bit_set()

Built-in Functions

Syntax: bit_set(var, bit)

Parameters: var may be a 8,16 or 32 bit variable (any Ivalue)
bit is a number 0- 31 representing a bit number, 0 is the least
significant bit.

Returns: Undefined

Function: Sets the specified bit (0-7, 0-15 or 0-31) in the given variable. The
least significant bit is 0. This function is the similar to: var |= (1<<bit);

Availability: All devices

Requires: Nothing
int x;

Examples: x=57

Example Files:

bit set(x,3);
// x 1s now 13

ex_patg.c

Also See: bit_clear(), bit_test()

bit_test()

Syntax: value = bit_test (var, bit)

Parameters: var may be a 8,16 or 32 bit variable (any Ivalue)
bit is a number 0- 31 representing a bit number, 0 is the least
significant bit.

Returns: Oorl

Function: Tests the specified bit (0-7,0-15 or 0-31) in the given variable. The
least significant bit is 0. This function is much more efficient than, but
otherwise similar to:
((var & (1<<bit)) !=0)

Availability: All devices

Requires: Nothing

177

../HelpFile/CCSC/javascript:shortcutlink.click()

CCS C Compiler

Examples:

Example Files:

Also See:

if(bit test(x,3) || !bit test (x,1)){
//either bit 3 is 1 or bit 1 is 0
}

if (data!=0)

for (1=31;!bit test(data, i);i--) ;
// 1 now has the most significant bit in data
// that is set to a 1

ex_patg.c

bit_clear(), bit_set()

brownout_enable()

Syntax: brownout_enable (value)

Parameters: value — TRUE or FALSE

Returns: undefined

Function: Enable or disable the software controlled brownout. Brownout will
cause the PIC to reset if the power voltage goes below a specific set-
point.
This function is only available on PICs with a software controlled

Availability: brownout. This may also require a specific configuration bit/fuse to be
set for the brownout to be software controlled.

Requires: Nothing

Examples: brownout enable (TRUE) ;

Example Files: None

Also See:
restart cause()

bsearch()

Syntax: ip = bsearch (&key, base, num, width, compare)

Parameters: key: Object to search for

178

../HelpFile/CCSC/javascript:shortcutlink.click()

Built-in Functions

Returns:

Function:

Availability:
Requires:

Examples:

base: Pointer to array of search data

num: Number of elements in search data

width: Width of elements in search data

compare: Function that compares two elements in search data

bsearch returns a pointer to an occurrence of key in the array pointed
to by base. If key is not found, the function returns NULL. If the array
is not in order or contains duplicate records with identical keys, the
result is unpredictable.

Performs a binary search of a sorted array
All devices

#INCLUDE <stdlib.h>

int nums[5]1={1,2,3,4,5};
int compar (const void *argl,const void *arg2);

void main () {
int *ip, key;
key = 3;
ip = bsearch(&key, nums, 5, sizeof (int), compar);

}

int compar (const void *argl,const void *arg2) {
if (* (int *) argl < (* (int *) arg2) return -1
else if (* (int *) argl == (* (int *) arg2) return O
else return 1;

}

Example Files: None

Also See: gsort()

calloc()

Syntax: ptr=calloc(nmem, size)

Parameters: nmem is an integer representing the number of member objects
size is the number of bytes to be allocated for each one of them.

Returns: A pointer to the allocated memory, if any. Returns null otherwise.

Function: The calloc function allocates space for an array of nmem objects

whose size is specified by size. The space is initialized to all bits zero.

179

CCS C Compiler

Availability:

Requires:

Examples:

Example Files:

All devices

#INCLUDE <stdlibm.h>

int * iptr;

iptr=calloc(5,10);

// iptr will point to a block of memory of
// 50 bytes all initialized to O.

None

realloc(), free(), malloc()

Also See:

ceil()

Syntax: result = ceil (value)

Parameters: value is a float

Returns: A float

Function: Computes the smallest integer value greater than the
argument. CEIL(12.67) is 13.00.

Availability: All devices

Requires: #INCLUDE<math.h>
// Calculate cost based on weight rounded
// up to the next pound

Examples:

Example Files:

Also See:

cost = ceil(weight) * DollarsPerPound;
None

floor

clcl setup_gate()
clc3_setup_gate()

clc2_setup_gate()
clc4_setup_gate()

Syntax:

clcl_setup_gate(gate, mode);

180

Built-in Functions

clc2_setup_gate(gate, mode);
clc3_setup_gate(gate, mode);
clc4_setup_gate(gate, mode);

Parameters:

Returns:
Function:

Availability:

Returns:

Examples:

Example Files:

Also See:

gate — selects which data gate of the Configurable Logic Cell (CLC)
module to setup, value can be 1 to 4.

mode — the mode to setup the specified data gate of the CLC module
into. The options are:

CLC_GATE_AND
CLC_GATE_NAND
CLC_GATE_NOR
CLC_GATE_OR
CLC_GATE_CLEAR
CLC_GATE_SET

Undefined

Sets the logic function performed on the inputs for the specified data
gate.

On devices with a CLC module.

Undefined.

clcl_setup gate(l, CLC_GATE_AND) ;
clcl setup gate(2, CLC_GATE NAND);
clcl setup gate (3, CLC GATE CLEAR);
clcl setup gate (4, CLC GATE SET);

None

setup_clex(), clex _setup_input()

clear_interrupt()

Syntax: clear_interrupt(level)

Parameters: level - a constant defined in the devices.h file

Returns: undefined

Function: Clears the interrupt flag for the given level. This function is designed

181

CCS C Compiler

Availability:

Requires:

Examples:
Example Files:

Also See:

for use with a specific interrupt, thus eliminating the GLOBAL level as
a possible parameter. Some chips that have interrupt on change for
individual pins allow the pin to be specified like INT_RAL.

All devices

Nothing

clear interrupt (int timerl);

None

enable interrupts() , #INT , Interrupts Overview
disable interrupts(), interrupt_actvie()

clear_pwml _interrupt()
clear_pwm2_interrupt()
clear_pwma3_interrupt()
clear_pwm4 _interrupt()
clear_pwmb5_interrupt()
clear_pwm6 _interrupt()

Syntax: clear_pwm1_interrupt (interrupt)
clear_pwm2_interrupt (interrupt)
clear_pwma3_interrupt (interrupt)
clear_pwmd4_interrupt (interrupt)
clear_pwmb5_interrupt (interrupt)
clear_pwm6_interrupt (interrupt)
Parameters: interrupt - 8-bit constant or variable. Constants are defined in the
device's header file as:
. PWM_PERIOD_INTERRUPT
. PWM_DUTY_INTERRUPT
. PWM_PHASE_INTERRUPT
. PWM_OFFSET_INTERRUPT
Returns: undefined.
Function: Clears one of the above PWM interrupts, multiple interrupts can be

cleared by or'ing multiple options together.

182

Built-in Functions

Availability:

Requires:

Examples:

Example Files:

Also See:

Devices with a 16-bit PWM module.

Nothing

clear pwml interrupt (PWM PERIOD INTERRUPT) ;
clear_pwml_interrupt (PWM_PERIOD INTERRUPT |
PWM DUTY INTERRUPT) ;

setup _pwm(), set pwm_duty(), set pwm phase(), set pwm_period(),
set pwm_offset(), enable _pwm interrupt(), disable pwm interrupt(),
pwm_interrupt_active()

cog_status()

Syntax: value=cog_status();

Parameters: None

Returns: value - the status of the COG module

Function: To determine if a shutdown event occurred on the Complementary
Output Generator
(COG) module.

Availability: All devices with a COG module.

Examples: if (cog status ()==COG AUTO SHUTDOWN)

Example Files:

Also See:

cog restart();

None

setup_cog(), set_cog_dead_band(), set_cog_blanking(),
set_cog_phase(), cog_restart()

cog_restart()

Syntax: cog_restart();

Parameters: None

Returns: Nothing

Function: To restart the Complementary Output Generator (COG) module after

an auto-shutdown

183

CCS C Compiler

Availability:
Examples:

Example Files:

event occurs, when not using auto-restart option of module.

All devices with a COG module.
if (cog status ()==COG AUTO SHUTDOWN)
cog _restart();

None

Also See: setup _cog(), set cog dead band(), set cog_blanking(),
set_cog_phase(), cog_status()

crc_calc() crc_calc8() crc_calcl6()

Syntax: Result = crc_calc (data,[width]);
Result = crc_calc(ptr,len,[width]);
Result = crc_calc8(data,[width]);
Result = crc_calc8(ptr,len,[width]);
Result = crc_calcl16(data,[width]); /lsame as crc_calc(
)
Result = crc_calc16(ptr,len,[width]); /lsame as crc_calc(
)

Parameters: data- This is one double word, word or byte that needs to be
processed when using
crc_calcl6(), or crc_calc8()
ptr- is a pointer to one or more double words, words or bytes of data
len- number of double words, words or bytes to process for function
calls
crc_calcl16(), or crc_calc8()
width- optional parameter used to specify the input data bit width to
use with the functions crc_calc16(), and crc_calc8()
If not specified, it defaults to the width of the return value of the
function, 8-bit for crc_calc8(), 16-bit for crc_calc16()
For devices with a 16-bit for CRC the input data bit width is the same
as the return bit width, crc_calc16() and 8-bit crc_calc8().

Returns: Returns the result of the final CRC calculation.

Function: This will process one data double word, word or byte or len double
words, words or bytes of data using the CRC engine.

Availability: Only the devices with built in CRC module.

Requires: Nothing

184

Built-in Functions

Examples:

Example Files:

Also See:

intlée datal8];
Result = crc calc(data,8);

None

setup_crc(); crc_init()

crc_init(mode)

Syntax: crc_init (data);

Parameters: data - This will setup the initial value used by write CRC shift register.
Most commonly, this register is set to 0x0000 for start of a new CRC
calculation.

Returns: undefined

Function: Configures the CRCWDAT register with the initial value used for CRC
calculations.

Availability: Only the devices with built in CRC module.

Requires: Nothing
crc_init (); // Starts the CRC accumulator out at 0

Exanuﬂes: crc_init (OXFEEE); // Starts the CRC accumulator out at

Example Files:

Also See:

0xFEEE
None

setup_crc(), crc_calc(), crc_calce8()

cwg_status()

Syntax: value = cwg_status();

Parameters: None

Returns: the status of the CWG module

Function: To determine if a shutdown event occured causing the module to

185

CCS C Compiler

Availability:
Examples:

Example Files:
Also See:

auto-shutdown

On devices with a CWG module.

if (cwg status() == CWG AUTO SHUTDOWN)
cwg_restart();

None

setup_cwg(), cwg_restart()

cwg_restart()

Syntax: cwg_restart();

Parameters: None

Returns: Nothing

Function: To restart the CWG module after an auto-shutdown event occurs,
when not using auto-raster option of module.

Availability: On devices with a CWG module.

Examples: if (cwg_status() == CWG_AUTO_ SHUTDOWN)

Example Files:

cwg restart();

None

Also See: setup_cwq(), cwg_status()

dac_write()

Syntax: dac_write (value)

Parameters: Value: 8-bit integer value to be written to the DAC module
Returns: undefined

Function: This function will write a 8-bit integer to the specified DAC channel.
Availability: Only available on devices with built in digital to analog converters.

186

Built-in Functions

Requires:

Examples:

Also See:

Nothing

int i = 0;
setup dac (DAC VDD | DAC OUTPUT) ;
while (1) {
i++;
dac write(i);
}

setup _dac(), DAC Overview, see header file for device selected

delay cycles()

Syntax: delay_cycles (count)

Parameters: count - a constant 1-255

Returns: undefined

Function: Creates code to perform a delay of the specified number of instruction
clocks (1-255). An instruction clock is equal to four oscillator clocks.
The delay time may be longer than requested if an interrupt is serviced
during the delay. The time spent in the ISR does not count toward the
delay time.

Availability: All devices

Requires: Nothing
delay cycles(1); // Same as a NOP

Examples:

Example Files:

Also See:

delay cycles(25); // At 20 mhz a 5us delay
ex_cust.c

delay us(), delay_ms()

delay_ms()

Syntax:

delay_ms (time)

187

../HelpFile/CCSC/javascript:shortcutlink.click()

CCS C Compiler

Parameters:

Returns:
Function:

Availability:
Requires:

Examples:

Example Files:

Also See:

time - a variable 0-65535(int16) or a constant 0-65535

Note: Previous compiler versions ignored the upper byte of an int16,
now the upper byte affects the time.

undefined

This function will create code to perform a delay of the specified
length. Time is specified in milliseconds. This function works by
executing a precise number of instructions to cause the requested
delay. It does not use any timers. If interrupts are enabled the time
spent in an interrupt routine is not counted toward the time.

The delay time may be longer than requested if an interrupt is serviced
during the delay. The time spent in the ISR does not count toward the
delay time.

All devices

#USE DELAY

#use delay (clock=20000000)

delay ms(2);

void delay seconds(int n) {
for (;n!=0; n- -)
delay ms(1000);

}

ex_sqw.c

delay us(), delay cycles(), #USE DELAY

delay_us()

Syntax:

delay_us (time)

Parameters:

time - a variable 0-65535(int16) or a constant 0-65535

Note: Previous compiler versions ignored the upper byte of an int16,
now the upper byte affects the time.

188

../HelpFile/CCSC/javascript:shortcutlink.click()

Built-in Functions

Returns:
Function:

Availability:
Requires:

Examples:

Example Files:

Also See:

undefined

Creates code to perform a delay of the specified length. Time is
specified in microseconds. Shorter delays will be INLINE code and
longer delays and variable delays are calls to a function. This function
works by executing a precise number of instructions to cause the
requested delay. It does not use any timers. If interrupts are enabled
the time spent in an interrupt routine is not counted toward the time.

The delay time may be longer than requested if an interrupt is
serviced during the delay. The time spent in the ISR does not count
toward the delay time.

All devices

#USE DELAY
#use delay(clock=20000000)

do {
output high (PIN BO);
delay us (duty) ;
output low (PIN_BO);
delay us(period-duty);
} while (TRUE) ;

ex_sqw.c

delay ms(), delay cycles(), #USE DELAY

disable_interrupts()

Syntax: disable_interrupts (level)

Parameters: level - a constant defined in the devices .h file

Returns: undefined

Function: Disables the interrupt at the given level. The GLOBAL level will not

disable any of the specific interrupts but will prevent any of the
specific interrupts, previously enabled to be active. Valid specific
levels are the same as are used in #INT_xxx and are listed in the
devices .h file. GLOBAL will also disable the peripheral interrupts on
devices that have it. Note that it is not necessary to disable interrupts
inside an interrupt service routine since interrupts are automatically
disabled. Some chips that have interrupt on change for individual

189

../HelpFile/CCSC/javascript:shortcutlink.click()

CCS C Compiler

pins allow the pin to be specified like INT_RA1.

Device with interrupts (PCM and PCH)

Availability:

Requires: Should have a #INT_xxxx, constants are defined in the devices .h
file.
disable interrupts(GLOBAL); // all interrupts OFF

disable interrupts (INT RDA); // RS232 OFF

enable interrupts (ADC_DONE) ;
enable interrupts (RB_CHANGE) ;
Examples: // these enable the interrupts
// but since the GLOBAL is disabled they
// are not activated until the following
// statement:
enable interrupts (GLOBAL) ;

Example Files: ex_sisr.c, ex_ stwt.c

enable interrupts(), clear interrupt (), #INT xxxX, Interrupts
Also See: Overview, interrupt_active()

disable _pwml_interrupt()
disable _pwm2_interrupt()
disable _pwm3_interrupt()
disable _pwm4_interrupt()
disable _pwm5_interrupt()
disable_pwm6_interrupt()

Syntax: disable_pwm1_interrupt (interrupt)
disable_pwm2_interrupt (interrupt)
disable_pwma3_interrupt (interrupt)
disable_pwm4_interrupt (interrupt)
disable_pwmb5_interrupt (interrupt)
disable_pwm6_interrupt (interrupt)

Parameters: interrupt - 8-bit constant or variable. Constants are defined in the
device's header file as:

° PWM_PERIOD_INTERRUPT
. PWM_DUTY_INTERRUPT

190

../HelpFile/CCSC/javascript:shortcutlink.click()
../HelpFile/CCSC/javascript:shortcutlink2.click()

Built-in Functions

Returns:

Function:

Availability:

Requires:

Examples:

Example Files:

Also See:

o PWM_PHASE_INTERRUPT
o PWM_OFFSET_INTERRUPT
undefined.

Disables one of the above PWM interrupts, multiple interrupts can be
disabled by or'ing multiple options together.

Devices with a 16-bit PWM module.

Nothing

disable pwml interrupt (PWM PERIOD INTERRUPT) ;
disable pwml interrupt (PWM PERIOD INTERRUPT |
PWM DUTY INTERRUPT) ;

setup_pwm(), set_ pwm_duty(), set pwm_phase(), set pwm_period(),
set_pwm_offset(), enable pwm_interrupt(), clear pwm _interrupt(),
pwm_interrupt_active()

div() Idiv()

Syntax:

idiv=div(num, denom)
Idiv =Idiv(Inum, Idenom)

Parameters:

Returns:

Function:

num and denom are signed integers.

num is the numerator and denom is the denominator.
Inum and Idenom are signed longs

Inum is the numerator and Idenom is the denominator.

idiv is a structure of type div_t and lidiv is a structure of type

Idiv_t. The div function returns a structure of type div_t, comprising of
both the quotient and the remainder. The Idiv function returns a
structure of type Idiv_t, comprising of both the quotient and the
remainder.

The div and Idiv function computes the quotient and remainder of the
division of the numerator by the denominator. If the division is
inexact, the resulting quotient is the integer or long of lesser
magnitude that is the nearest to the algebraic quotient. If the result
cannot be represented, the behavior is undefined; otherwise
quot*denom(ldenom)+rem shall equal num(lnum).

191

CCS C Compiler

Availability:
Requires:

Examples:

Example Files:

Also See:

All devices.
#INCLUDE <STDLIB.H>

div_t idiv;

ldiv_t lidiv;

idiv=div (3,2);

//idiv will contain quot=1 and rem=1

1idiv=1div (300,250);
//1idiv will contain lidiv.quot=1 and lidiv.rem=50

None

None

enable_interrupts()

Syntax:

enable_interrupts (level)

Parameters:

Returns:

Function:

Availability:
Requires:

level is a constant defined in the devices *.h file.
undefined.

This function enables the interrupt at the given level. An interrupt
procedure should have been defined for the indicated interrupt.

The GLOBAL level will not enable any of the specific interrupts, but
will allow any of the specified interrupts previously enabled to
become active. Some chips that have an interrupt on change for
individual pins all the pin to be specified, such as INT_RA1. For
interrupts that use edge detection to trigger, it can be setup in the
enable_interrupts() function without making a separate call to the
set_int_edge() function.

Enabling interrupts does not clear the interrupt flag if there was a
pending interrupt prior to the call. Use the clear_interrupt() function
to clear pending interrupts before the call to enable_interrupts() to
discard the prior interrupts.

Devices with interrupts.

Should have a #INT_XXXX to define the ISR, and constants are
defined in the devices *.h file.

192

Built-in Functions

enable interrupts (GLOBAL) ;
enable interrupts (INT_TIMERO) ;

Examples: enable interrupts(INT EXT H2L);
Example Files: ex_sisr.c, ex_stwt.c

disable interrupts(), clear_interrupt (), ext_int_edge(), #INT XxxX,
Also See: Interrupts Overview, interrupt_active()

enable_pwml_interrupt()
enable pwm2_interrupt()
enable pwm3_interrupt()
enable_pwm4_interrupt()
enable pwmb5 interrupt()
enable_pwm6_interrupt()

Syntax: enable_pwm1_interrupt (interrupt)
enable_pwm2_interrupt (interrupt)
enable_pwma3_interrupt (interrupt)
enable_pwm4_interrupt (interrupt)
enable_pwmb5_interrupt (interrupt)
enable_pwm6_interrupt (interrupt)

Parameters: interrupt - 8-bit constant or variable. Constants are defined in the
device's header file as:

° PWM_PERIOD_INTERRUPT
. PWM_DUTY_INTERRUPT

. PWM_PHASE_INTERRUPT
. PWM_OFFSET_INTERRUPT

Returns: undefined.

Function: Enables one of the above PWM interrupts, multiple interrupts can be
enabled by or'ing multiple options together. For the interrupt to
occur, the overall PWMXx interrupt still needs to be enabled and an
interrupt service routine still needs to be created.

Availability: Devices with a 16-bit PWM module.

Requires: Nothing

Examples: enable pwml interrupt (PWM PERIOD INTERRUPT) ;

193

../HelpFile/CCSC/javascript:shortcutlink.click()
../HelpFile/CCSC/javascript:shortcutlink2.click()

CCS C Compiler

Example Files:

Also See:

enable pwml interrupt (PWM PERIOD INTERRUPT |
PWM_DUTY_ INTERRUPT) ;

setup_pwm(), set_pwm_duty(), set pwm_phase(), set pwm_period(),
set pwm_offset(), disable pwm interrupt(), clear pwm _interrupt(),
pwm _interrupt active()

erase_eeprom()

Syntax: erase_eeprom (address);
Parameters: address is 8 bits on PCB parts.
Returns: undefined
Function: This will erase a row of the EEPROM or Flash Data Memory.
S PCB devices with EEPROM like the 12F519
Availability:
Requires: Nothing
erase eeprom(0); // erase the first row of the EEPROM (8
bytes)
Examples:

Example Files:

Also See:

None

write program eeprom(), write program memory(), Program Eeprom
Overview

erase_program_eeprom()

Syntax: erase_program_eeprom (address);

Parameters: address is 16 bits on PCM parts and 32 bits on PCH parts . The
least significant bits may be ignored.

Returns: undefined

Function: Erases FLASH_ERASE_SIZE bytes to OXFFFF in program memory.

194

Built-in Functions

Availability:
Requires:

Examples:

Example Files:

Also See:

FLASH_ERASE_SIZE varies depending on the part. For example, if
it is 64 bytes then the least significant 6 bits of address is ignored.

See write_program_memory() for more information on program
memory access.

Only devices that allow writes to program memory.

Nothing

for (1=0x1000;i<=0x1fff;i+=getenv ("FLASH ERASE SIZE"))
erase program memory (i) ;

None

write program eeprom(), write program memory(), Program Eeprom
Overview

exp()

Syntax: result = exp (value)

Parameters: value is a float

Returns: A float

Function: Computes the exponential function of the argument. This is e to the
power of value where e is the base of natural logarithms. exp(1) is
2.7182818.
Note on error handling:
If "errno.h" is included then the domain and range errors are stored in
the errno variable. The user can check the errno to see if an error has
occurred and print the error using the perror function.
Range error occur in the following case:
e exp: when the argument is too large

Availability: All devices

Requires: #INCLUDE <math.h>
// Calculate x to the power of y

Examples:

x power y = exp(y * log(x));

195

CCS C Compiler

Example Files:

Also See:

None

pow(), log(), 1og10()

ext_int_edge()

Syntax: ext_int_edge (source, edge)

Parameters: source is a constant 0,1 or 2 for the PIC18XXX and O otherwise.
Source is optional and defaults to 0.
edge is a constant H_TO_L or L_TO_H representing "high to low"
and "low to high"

Returns: undefined

Function: Determines when the external interrupt is acted upon. The edge may
be L_TO_H or H_TO_L to specify the rising or falling edge.

Availability: Only devices with interrupts (PCM and PCH)

Requires: Constants are in the devices .h file

Examples: ext_int edge(2, L_TO H); // Set up PIC18 EXT2

Example Files:

Also See:

ext int edge(H TO L); // Sets up EXT
ex_wakup.c

#INT_EXT , enable_interrupts() , disable_interrupts() , Interrupts
Overview

fabs()

Syntax: result=fabs (value)

Parameters: value is a float

Returns: result is a float

Function: The fabs function computes the absolute value of a float
Availability: All devices.

Requires: #INCLUDE <math.h>

196

../HelpFile/CCSC/javascript:shortcutlink.click()

Built-in Functions

Examples:

Example Files:

Also See:

float result;
result=fabs (-40.0)
// result is 40.0

None
abs(), labs()

floor()

Syntax: result = floor (value)
Parameters: value is a float
Returns: result is a float
Function: Computes the greatest integer value not greater than the
argument. Floor (12.67) is 12.00.
Availability: All devices.
Requires: #INCLUDE <math.h>
// Find the fractional part of a value
Exan“ﬂeS: frac = value - floor (value);
Example Files: None
ceil()

Also See:

fmod()

Syntax: result= fmod (vall, val2)
Parameters: vallis a float
val2 is a float
Returns: result is a float
Function: Returns the floating point remainder of vall/val2. Returns the value

vall - i*val2 for some integer “i” such that, if val2 is nonzero, the

197

CCS C Compiler

result has the same sign as vall and magnitude less than the
magnitude of val2.

All devices.

Availability:

Requires: #INCLUDE <math.h>
float result;

les: result=fmod (3, 2) ;

Examples: // result is 1

Example Files: None

Also See: None

free()

Syntax: free(ptr)

Parameters: ptr is a pointer earlier returned by the calloc, malloc or realloc.

Returns: No value

Function: The free function causes the space pointed to by the ptr to be
deallocated, that is made available for further allocation. If ptr is a null
pointer, no action occurs. If the ptr does not match a pointer earlier
returned by the calloc, malloc or realloc, or if the space has been
deallocated by a call to free or realloc function, the behavior is
undefined.

Availability: All devices.

Requires: #INCLUDE <stdlibm.h>
int * iptr;
iptr=malloc(10);

Examples: free (iptr)

Example Files:

Also See:

// iptr will be deallocated
None

realloc(), malloc(), calloc()

198

frexp()

Built-in Functions

Syntax: result=frexp (value, &exp);

Parameters: value is a float
exp is a signed int.

Returns: result is a float

Function: The frexp function breaks a floating point number into a normalized
fraction and an integral power of 2. It stores the integer in the signed
int object exp. The result is in the interval [1/2 tol) or zero, such that
value is result times 2 raised to power exp. If value is zero then both
parts are zero.

Availability: All devices.

Requires: #INCLUDE <math.h>
float result;
signed int exp;

Examples: result=frexp (.5, &exp);

Example Files:

// result is .5 and exp is O
None

Idexp(), exp(), log(), 10g10(), modf()

Also See:
scanf()
Syntax: scanf(cstring);

scanf(cstring, values...)

fscanf(stream, cstring, values...)
Parameters: cstring is a constant string.

values is a list of variables separated by commas.

stream is a stream identifier.

0 if a failure occurred, otherwise it returns the number of conversion
Returns: isnpeuﬁers that were read in, plus the number of constant strings read
Function: Reads in a string of characters from the standard RS-232 pins and

199

CCS C Compiler

formats the string according to the format specifiers. The format
specifier character (%) used within the string indicates that a
conversion specification is to be done and the value is to be saved
into the corresponding argument variable. A %% will input a single
%. Formatting rules for the format specifier as follows:

If fscanf() is used, then the specified stream is used, where scanf()
defaults to STDIN (the last USE RS232).

Format:

The format takes the generic form %nt. n is an option and may be 1-
99 specifying the field width, the number of characters to be inputted.
t is the type and maybe one of the following:

c Matches a sequence of characters of the number
specified by the field width (1 if no field width is
specified). The corresponding argument shall be a
pointer to the initial character of an array long
enough to accept the sequence.

s Matches a sequence of non-white space characters.
The corresponding argument shall be a pointer to
the initial character of an array long enough to
accept the sequence and a terminating null
character, which will be added automatically.

u Matches an unsigned decimal integer. The
corresponding argument shall be a pointer to an
unsigned integer.

Lu Matches a long unsigned decimal integer. The
corresponding argument shall be a pointer to a
long unsigned integer.

d Matches a signed decimal integer. The
corresponding argument shall be a pointer to a
signed integer.

Ld Matches a long signed decimal integer. The
corresponding argument shall be a pointer to a
long signed integer.

(o] Matches a signed or unsigned octal integer. The
corresponding argument shall be a pointer to a
signed or unsigned integer.

Lo Matches a long signed or unsigned octal integer. The
corresponding argument shall be a pointer to a

200

Built-in Functions

x or X

Lx or LX

Li

f,gore

long signed or unsigned integer.

Matches a hexadecimal integer. The corresponding
argument shall be a pointer to a signed or unsigned
integer.

Matches a long hexadecimal integer. The
corresponding argument shall be a pointer to a
long signed or unsigned integer.

Matches a signed or unsigned integer. The
corresponding argument shall be a pointer to a
signed or unsigned integer.

Matches a long signed or unsigned integer. The
corresponding argument shall be a pointer to a
long signed or unsigned integer.

Matches a floating point number in decimal or
exponential format. The corresponding argument
shall be a pointer to a float.

Matches a non-empty sequence of characters from a
set of expected characters. The sequence of
characters included in the set are made up of all
character following the left bracket ([) up to the
matching right bracket (]). Unless the first
character after the left bracket is a #, in which case
the set of characters contain all characters that do
not appear between the brackets. If a - character
is in the set and is not the first or second, where
the first is a ”, nor the last character, then the set
includes all characters from the character before
the - to the character after the -.

For example, %[a-z] would include all characters from
a to z in the set and %["a-z] would exclude all
characters from a to z from the set. The
corresponding argument shall be a pointer to the
initial character of an array long enough to accept
the sequence and a terminating null character,
which will be added automatically.

Assigns the number of characters read thus far by the
call to scanf() to the corresponding argument. The
corresponding argument shall be a pointer to an
unsigned integer.

An optional assignment-suppressing character (*) can

201

CCS C Compiler

be used after the format specifier to indicate that
the conversion specification is to be done, but not
saved into a corresponding variable. In this case,
no corresponding argument variable should be
passed to the scanf() function.

A string composed of ordinary non-white space
characters is executed by reading the next
character of the string. If one of the inputted
characters differs from the string, the function fails
and exits. If a white-space character precedes the
ordinary non-white space characters, then white-
space characters are first read in until a non-white
space character is read.

White-space characters are skipped, except for the
conversion specifiers [, ¢ or n, unless a white-
space character precedes the [or ¢ specifiers.

Availability: All Devices
Requires: #USE RS232
char name[2-];
unsigned int8 number;
signed int32 time;
Exan“ﬂeS: if (scanf ("%u%s%1ld", &number, name, &time))
printf"\r\nName: %s, Number: %u, Time:
%1d", name, number, time) ;
Example Files: None
RS232 1/0 Overview, getc(), putc(), printf
Also See: getc(), putc(), printf()

get _capture()

Syntax: value = get_capture(x)

Parameters: x defines which ccp module to read from.

Returns: A 16-bit timer value.

Function: This function obtains the last capture time from the indicated CCP

module

202

Built-in Functions

Availability:
Requires:

Examples:
Example Files:

Also See:

Only available on devices with Input Capture modules

None

€x_ccpmp.c

setup_ccpx()

get_capture_event()

Syntax: result = get_capture_event([stream]);

Parameters: stream — optional parameter specifying the stream defined in #USE
CAPTURE.

Returns: TRUE if a capture event occurred, FALSE otherwise.

Function: To determine if a capture event occurred.

Availability: All devices.

Requires: #USE CAPTURE
#USE
CAPTURE(INPUT=PIN_C2,CAPTURE_RISING,TIMER=1,FASTEST)

Examples: if(get_capture_event())

Example Files:

Also See:

result = get_capture_time();

None
#use_capture, get_capture_time()

get _capture_time()

Syntax: result = get_capture_time([stream]);

Parameters: stream — optional parameter specifying the stream defined in #USE
CAPTURE.

Returns: An int16 value representing the last capture time.

Function: To get the last capture time.

203

../HelpFile/CCSC/javascript:shortcutlink.click()

CCS C Compiler

Availability:
Requires:
Examples:
Example Files:

Also See:

All devices.
#USE CAPTURE

#USE
CAPTURE (INPUT=PIN C2,CAPTURE RISING, TIMER=1, FASTEST)
result = get capture time();

None

#use capture, get_capture event()

get _capture32()

Syntax:

result = get_capture32(x,[wait]);

Parameters:

Returns:
Function:

Availability:
Requires:

Examples:

Example Files:

x is 1-16 and defines which input capture result buffer modules to
read from.

wait is an optional parameter specifying if the compiler should read
the oldest result in

the bugger or the next result to enter the buffer.

A 32-bit timer value

If wait is true, the current capture values in the result buffer are
cleared, and the next result

to be sent to the buffer is returned. If wait is false, the default
setting, the first value currently

in the buffer is returned. However, the buffer will only hold four
results while waiting for them

to be read, so if get_capture32 is not being called for every capture
event. When wait is false,

the buffer will fill with old capture values and any new results will be
lost.

Only devices with a 32-bit Input Capture module

Nothing

setup timer2 (TMR INTERNAL | TMR DIV BY 1 | TMR 32 BIT);
Setupicapture(1,CAPTURE7FE | CAPTUREiTIMERZ |
CAPTURE 32 BIT);
while (TRUE) {

timerValue=get capture32 (1, TRUE);

printf ("Capture 1 occurred at: S$LU", timerValue);

}

None

204

Built-in Functions

Also See:

setup_capture(), setup_compare(), get_capture(), Input Capture
Overview

get_hspwm_capture()

Syntax: result=get_hspwm_capture(unit);
Parameters: unit - The High Speed PWM unit to set.
Unsigned in16 value representing the capture PWM time base
Returns: value.
Function: Gets the captured PWM time base value from the leading edge
detection on the current-limit input.
Only on devices with a built-in High Speed PWM module
Availability: (dsPIC33FJIxxGSxxx, dsPIC33EPxxxMUxxx, dSPIC33EPXxXxMCXxX,
’ and dsPIC33EVxxxGMxxx devices)
Requires: None
result=get hspwm capture(l);
Examples:

Example Files:

Also See:

None

setup _hspwm_unit(), set _hspwm_phase(), set_hspwm_duty(),
set_hspwm_event(),

setup_hspwm_blanking(), setup_hspwm_trigger(),
set_hspwm_override(),

setup_hspwm_chop_clock(), setup_hspwm_unit_chop_clock()
setup_hspwm(), setup_hspwm_secondary()

get_nco_accumulator()

Syntax: value =get_nco_accumulator();
Parameters: none

Returns: current value of accumulator.
Availability: On devices with a NCO module.

205

CCS C Compiler

Examples:
Example Files:

Also See:

value = get nco_accumulator();
None

setup_nco(), set_nco_inc_value(), get_nco_inc_value()

get _nco_inc_value()

Syntax: value =get_nco_inc_value();
Parameters: None
Returns: - current value set in increment registers.
Availability: On devices with a NCO module.

value = get nco inc value();
Examples: - - -
Example Files: None

Also See:

setup_nco(), set nco_inc value(), get nco_accumulator()

get ticks()

Syntax: value = get_ticks([stream]);

Parameters: stream — optional parameter specifying the stream defined in #USE
TIMER.

Returns: —a 8, 16 or 32 bit integer. (int8, intl6 or int32)

Function: Returns the current tick value of the tick timer. The size returned
depends on the size of the tick timer.

Availability: All devices.

Requires: #USE TIMER(options)
#USE TIMER (TIMER=1, TICK=1lms,BITS=16,NOISR)
void main (void) {

Examples: unsigned intl6 current tick;

current tick = get ticks();

206

Built-in Functions

Example Files: None
#USE TIMER, set ticks()

Also See:

get _timerA()

Syntax: value=get_timerA();

Parameters: none

Returns: The current value of the timer as an int8

Function: Returns the current value of the timer. All timers count up. When a
timer reaches the maximum value it will flip over to 0 and continue
counting (254, 255, 0, 1, 2, ...).

Availability: This function is only available on devices with Timer A hardware.

Requires: Nothing
set timerA(0);

Examples: while (timerA < 200);

Example Files: none

Also See set_timerA(), setup_timer_A(), TimerA Overview

get_timerB()

Syntax: value=get_timerB();

Parameters: none

Returns: The current value of the timer as an int8

Function: Returns the current value of the timer. All timers count up. When a
timer reaches the maximum value it will flip over to 0 and continue
counting (254, 255, 0, 1, 2, ...).

Availability: This function is only available on devices with Timer B hardware.

207

CCS C Compiler

Requires: Nothing

set timerB(0);
Examples: while (timerB < 200);
Example Files: none

Also See: set_timerB(), setup_timer_B(), TimerB Overview

get_timerx()

Syntax: value=get_timer0() Same as: value=get_rtcc()
value=get_timer1()
value=get_timer2()
value=get_timer3()
value=get_timer4()
value=get_timer5()
value=get_timer6()
value=get_timer7()
value=get_timer8()
value=get_timer10()
value=get_timer12()

Parameters: None

Timers 1, 3, 5 and 7 return a 16 bit int.
Timers 2 ,4, 6, 8, 10 and 12 return an 8 bit int.

Returns: Timer 0 (AKA RTCC) returns a 8 bit int except on the PIC18XXX
where it returns a 16 bit int.

Function: Returns the count value of a real time clock/counter. RTCC and
Timer0 are the same. All timers count up. When a timer reaches the
maximum value it will flip over to 0 and continue counting (254, 255,
0,1,2.).

Timer 0 - All devices
Timers 1 & 2 - Most but not all PCM devices

Availability: Timer 3, 5 and 7 - Some PIC18 and Enhanced PIC16 devices
Timer 4,6,8,10 and 12- Some PIC18 and Enhanced PIC16 devices

Requires: Nothing

set timer0 (0);
Examples: while (get_timer0O() < 200) ;
Example Files: ex_stwt.c

208

../HelpFile/CCSC/javascript:shortcutlink.click()

Built-in Functions

set timerx(), TimerO Overview , Timerl Overview , Timer2

Also See: Overview , Timer5 Overview
get_tris_x()
Syntax: value = get_tris_A();

value = get_tris_B();
value = get_tris_C();
value = get_tris_D();
value = get_tris_E();
value = get_tris_F();
value = get_tris_G();
value = get_tris_H();
value = get_tris_J();
value = get_tris_K()

Parameters: None

Returns: intl16, the value of TRIS register

Function: Returns the value of the TRIS register of port A, B, C, D, E, F, G,
H, J, or K.

Availability: All devices.

Requires: Nothing

Examples: tris a = GET _TRIS A();

Example Files: None

Also See: input(), output_low(), output_high()

getc() getch() getchar() fgetc()

Syntax: value = getc()
value = fgetc(stream)
value=getch()
value=getchar()

Parameters: stream is a stream identifier (a constant byte)

209

CCS C Compiler

Returns:
Function:

Availability:
Requires:

Examples:

Example Files:

An 8 bit character

This function waits for a character to come in over the RS232 RCV
pin and returns the character. If you do not want to hang forever
waiting for an incoming character use kbhit() to test for a character
available. If a built-in USART is used the hardware can buffer 3
characters otherwise GETC must be active while the character is
being received by the PIC®.

If fgetc() is used then the specified stream is used where getc()
defaults to STDIN (the last USE RS232).

All devices

#USE RS232

printf ("Continue (Y,N)?");
do {
answer=getch () ;
}while (answer!='Y' && answer!='N");

#use rs232 (baud=9600,xmit=pin c6,
rcv=pin c7,stream=HOSTPC)
#use rs232(baud=1200,xmit=pin bl,
rcv=pin_ b0, stream=GPS)
#use rs232(baud=9600, xmit=pin b3,
stream=DEBUG)

while (TRUE) {
c=fgetc (GPS) ;
fputc (c, HOSTPC) ;
if (c==13)
fprintf (DEBUG, "Got a CR\r\n");
}

ex_stwt.c

putc(), kbhit(), printf(), #USE RS232, input.c, RS232 1/0 Overview

Also See:

getenv()

Syntax: value = getenv (cstring);

Parameters: cstring is a constant string with a recognized keyword
Returns: A constant number, a constant string or O

210

../HelpFile/CCSC/javascript:shortcutlink.click()

Built-in Functions

Function:

This function obtains information about the execution
environment. The following are recognized keywords. This
function returns a constant 0 if the keyword is not understood.

FUSE_SET:fffff

Returns 1 if fuse fffff is enabled

FUSE_VALID:fffff

ID

DEVICE
CLOCK

VERSION
VERSION_STRING

PROGRAM_MEMORY
STACK

SCRATCH
DATA_EEPROM

EEPROM_ADDRESS

READ_PROGRAM

ADC_CHANNELS
ADC_RESOLUTION

ICD
SPI

Returns 1 if fuse fffff is valid

Returns the device ID (set by #ID)

Returns the device name string (like
"PIC16C74")

Returns the MPU FOSC

Returns the compiler version as a
float

Returns the compiler version as a
string

Returns the size of memory for code
(in words)

Returns the stack size

Returns the start of the compiler
scratch area

Returns the number of bytes of data
EEPROM

Returns the address of the start of
EEPROM. 0 if not supported by the
device.

Returns a 1 if the code memory can
be read

Returns the number of A/D channels

Returns the number of bits returned
from READ_ADC()

Returns a 1 if this is being compiled
fora ICD

Returns a 1 if the device has SPI

211

CCS C Compiler

USB
CAN

12C_SLAVE
[2C_MASTER

PSP
COMP

VREF
LCD

UART
AUART

CCPx
TIMERX

FLASH_WRITE_SIZE
FLASH_ERASE_SIZE

BYTES_PER_ADDRE
SS

BITS_PER_INSTRUCT
ION

RAM

Returns a 1 if the device has USB

Returns a 1 if the device has CAN

Returns a 1 if the device has 12C
slave H/W

Returns a 1 if the device has 12C
master H/W

Returns a 1 if the device has PSP

Returns a 1 if the device has a
comparator

Returns a 1 if the device has a
voltage reference

Returns a 1 if the device has direct
LCD HW

Returns the number of H/W UARTSs

Returns 1 if the device has an ADV
UART

Returns a 1 if the device has CCP
number x

Returns a 1 if the device has TIMER
number x

Smallest number of bytes that can
be written to FLASH

Smallest number of bytes that can
be erased in FLASH

Returns the number of bytes at an
address location

Returns the size of an instruction in
bits

Returns the number of RAM bytes
available for your device.

212

Built-in Functions

SFR:name

BIT:name

SFR_VALID:name

BIT_VALID:name

PIN:PB

UARTX_RX
UARTx_TX

SPIx_DI
SPIXDO

SPIXCLK
ETHERNET

QEI

Returns the address of the specified
special file register. The output
format can be used with the
preprocessor command #bit. name
must match SFR denomination of
your target PIC (example: STATUS,
INTCON, TXREG, RCREG, etc)

Returns the bit address of the
specified special file register bit. The
output format will be in “address:bit”,
which can be used with the
preprocessor command #byte. name
must match SFR.bit denomination of
your target PIC (example: C, Z, GIE,
TMROIF, etc)

Returns TRUE if the specified
special file register name is valid
and exists for your target PIC
(example:
getenv("SFR_VALID:INTCON"))

Returns TRUE if the specified
special file register bit is valid and
exists for your target PIC (example:
getenv("BIT_VALID:TMROIF"))

Returns 1 if PB is a valid I/O PIN
(like A2)

Returns UARTXPin (like PINXC7)
Returns UARTXPin (like PINXC6)

Returns SPIxDI Pin
Returns SPIXDO Pin

Returns SPIXCLK Pin

Returns 1 if device supports
Ethernet

Returns 1 if device has QEI

213

CCS C Compiler

Availability:

Requires:

Examples:

DAC

DSP
DCI

DMA
CRC

CWG
NCO

CLC
DSM

OPAMP
RTC

CAP_SENSE

EXTERNAL_MEMORY

INSTRUCTION_CLOC
K

ENH16

Returns 1 if device has a D/A
Converter

Returns 1 if device supports DSP
instructions

Returns 1 if device has a DCI
module

Returns 1 if device supports DMA

Returns 1 if device has a CRC
module

Returns 1 if device has a CWG
module

Returns 1 if device has a NCO
module

Returns 1 if device has a CLC
module

Returns 1 if device has a DSM
module

Returns 1 if device has op amps

Returns 1 if device has a Real Time
Clock

Returns 1 if device has a CSM cap
sense module and 2 if it has a
CTMU module

Returns 1 if device supports external
program memory

Returns the MPU instruction clock

Returns 1 for Enhanced 16 devices

All devices

Nothing

#IF getenv ("VERSION")<3.050
#ERROR Compiler version too old

#ENDIF

for (i=0;i<getenv ("DATA EEPROM");i++)

write eeprom(i,0);

214

Built-in Functions

Example Files:

Also See:

#IF getenv ("FUSE VALID:BROWNOUT")
#FUSE BROWNOUT
#ENDIF

#byte status reg=GETENV (“SFR:STATUS”)

#bit carry flag=GETENV (“BIT:C”)
None

None

gets()

fgets()

Syntax: gets (string)
value = fgets (string, stream)
Parameters: string is a pointer to an array of characters.
Stream is a stream identifier (a constant byte)
Returns: undefined
Function: Reads characters (using getc()) into the string until a RETURN
(value 13) is encountered. The string is terminated with a 0. Note
that INPUT.C has a more versatile get_string function.
If fgets() is used then the specified stream is used where gets()
defaults to STDIN (the last USE RS232).
Availability: All devices
Requires: #USE RS232
char string[30];
printf ("Password: ");
Examples: gets (string);
if (strcmp (string, password))
printf ("OK") ;
Example Files: None

215

CCS C Compiler

Also See:

getc(), get_string in input.c

goto_address()

Syntax: goto_address(location);

Parameters: location is a ROM address, 16 or 32 bit int.

Returns: Nothing

Function: This function jumps to the address specified by location. Jumps
outside of the current function should be done only with great
caution. This is not a normally used function except in very special
situations.

Availability: All devices

Requires: Nothing
#define LOAD REQUEST PIN Bl
#define LOADER 0x1£00

Examples:

Example Files:

Also See:

if (input (LOAD_REQUEST))
goto_address (LOADER) ;

setjimp.h

label address()

high_speed _adc_done()

Syntax: value = high_speed_adc_done([pair]);

Parameters: pair — Optional parameter that determines which ADC pair's ready
flag to check. If not used all ready flags are checked.
An intl16. If pairis used 1 will be return if ADC is done with
conversion, O will be return if still busy. If pair isn't use it will return

Returns: a bit map of which conversion are ready to be read. For example a

return value of 0x0041 means that ADC pair 6, AN12 and AN13,
and ADC pair 0, ANO and AN1, are ready to be read.

216

../HelpFile/CCSC/javascript:shortcutlink.click()
../HelpFile/CCSC/javascript:shortcutlink.click()

Built-in Functions

Function:

Availability:
Requires:

Examples:

Example Files:

Also See:

Can be polled to determine if the ADC has valid data to be read.
Only on dsPIC33FJxxGSxxx devices.

None

intl6 result[2]
setup_high speed adc pair(1l,

INDIVIDUAL SOFTWARE TRIGGER) ;
setup_high speed adc(ADC_CLOCK DIV 4);

read high speed adc(l, ADC_START ONLY);

while ('high speed adc done(1l));

read high speed adc(1l, ADC READ ONLY, result);
printf ("AN2 value = %LX, AN3 value =
$LX\n\r”,result[0],result[1l]);

None

setup_high_speed_adc(), setup_high_speed_adc_pair(),
read_high speed_adc()

12c_init()

Syntax: i2c_init([stream],baud);

Parameters: stream — optional parameter specifying the stream
defined in #USE 12C.
baud — if baud is 0, I12C peripheral will be disable. If baudis 1, 12C
peripheral is initialized and enabled with baud rate specified in
#USE 12C directive. If baud is > 1 then 12C peripheral is initialized
and enabled to specified baud rate.

Returns: Nothing

Function: To initialize 12C peripheral at run time to specified baud rate.

Availability: All devices.

Requires: #USE 12C
#USE I2C(MASTER,I2C1, FAST,NOINIT)

Examples: i2c_init(TRUE); //initialize and enable 12C peripheral

to baud rate specified in //[#USE 12C
i2c_init(500000); //initialize and enable 12C peripheral

217

CCS C Compiler

Example Files:

Also See:

to a baud rate of 500 //KBPS
None

12C_POLL(), i2c_speed(), 12C_SlaveAddr(), 12C_ISR_STATE()
J2C_WRITE(),
12C_READ(), _USE_12C(), 12C()

12c_isr_state()

Syntax: state = i2c_isr_state();
state = i2c_isr_state(stream);

Parameters: None
state is an 8 bit int
0 - Address match received with R/W bit clear, perform i2c_read()
to read the 12C address.
1-0x7F - Master has written data; i2c_read() will immediately return
the data
0x80 - Address match received with R/W bit set; perform i2c_read(

Returns:) to read the 12C address, and use i2c_write() to pre-load the

’ transmit buffer for the next transaction (next 12C read performed by
master will read this byte).
0x81-0xFF - Transmission completed and acknowledged; respond
with i2c_write() to pre-load the transmit buffer for the next
transation (the next 12C read performed by master will read this
byte).

Function: Returns the state of I2C communications in 12C slave mode after
an SSP interrupt. The return value increments with each byte
received or sent.

If 0x00 or 0x80 is returned, an i2C_read() needs to be performed
to read the 12C address that was sent (it will match the address
configured by #USE 12C so this value can be ignored)

Availability: Devices with i2c hardware

Requires: #USE 12C
#INT SSP

void i2c isr() |
state = 12c isr state();
if (state==) i2c read();

Examples: i@c_read(); B

if (state == 0x80)

i2c _read(2);
if (state >= 0x80)
i2c write (send buffer[state - 0x80]);

218

Built-in Functions

Example Files:

Also See:

else if (state > 0)
rcv_buffer[state - 1] = i2c read();

}

ex_slave.c

i2c_poll, i2c_speed, i2¢c_start, i2c_stop, i2c_slaveaddr, i2c_write,
i2c_read, #USE 12C, 12C Overview

12c_poll()

Syntax:

i2c_poll()
i2c_poll(stream)

Parameters:

Returns:
Function:

Availability:
Requires:

Examples:

Example Files:

Also See:

stream (optional)- specify the stream defined in #USE 12C

1 (TRUE) or 0 (FALSE)

The 12C_POLL() function should only be used when the built-in
SSP is used. This function returns TRUE if the hardware has a
received byte in the buffer. When a TRUE is returned, a call to
12C_READ() will immediately return the byte that was received.
Devices with built in 12C

#USE 12C

if(i2c-poll())
buffer [index]=i2c-read();//read data

None

i2c_speed, i2c_start, i2c_stop, i2¢c_slaveaddr, i2c isr_state,
i2c_write, i2c_read, #USE 12C, 12C Overview

12c_read()

Syntax: data =i2c_read();

data = i2c_read(ack);

data = i2c_read(stream, ack);
Parameters: ack -Optional, defaults to 1.

0 indicates do not ack.

219

../HelpFile/CCSC/javascript:shortcutlink.click()

CCS C Compiler

Returns:

Function:

Availability:
Requires:

Examples:

Example Files:

Also See:

1 indicates to ack.

2 slave only, indicates to not release clock at end of read. Use
when i2c_isr_state ()

returns 0x80.

stream - specify the stream defined in #USE 12C

data - 8 bit int

Reads a byte over the 12C interface. In master mode this function
will generate the clock and in slave mode it will wait for the

clock. There is no timeout for the slave, use i2c_poll() to prevent a
lockup. Use restart_wdt() in the #USE 12C to strobe the watch-dog
timer in the slave mode while waiting.

All devices.

#USE 12C

i2c_start();

i2c write(Oxal);

datal = i2c_read(TRUE);
data2 = i2c_read(FALSE);
i2c_stop();

ex_extee.c with 2416.c

i2c_poll, i2c_speed, i2c_start, i2¢c_stop, i2¢c_slaveaddr,
i2c_isr_state, i2c_write, #USE 12C, 12C Overview

12c_slaveaddr()

Syntax: I2C_SlaveAddr(addr);

I2C_SlaveAddr(stream, addr);
Parameters: addr = 8 bit device address

stream(optional) - specifies the stream used in #USE 12C
Returns: Nothing
Function: This functions sets the address for the 12C interface in slave mode.
Availability: Devices with built in 12C
Requires: #USE 12C

220

../HelpFile/CCSC/javascript:shortcutlink.click()
../HelpFile/CCSC/javascript:shortcutlink2.click()

Built-in Functions

i2c_SlaveAddr (0x08);
Examples: i2c_SlaveAddr (i2cStreaml, 0x08);

Example Files: ex_slave.c

i2c_poll, i2c_speed, i2¢c_start, i2c_stop, i2c_isr_state, i2c_write,
Also See: i2c_read, #USE 12C, 12C Overview

12c_speed()

Syntax: i2c_speed (baud)
i2c_speed (stream, baud)

Parameters: baud is the number of bits per second.
stream - specify the stream defined in #USE [12C

Returns: Nothing.
Function: This function changes the 12c bit rate at run time. This only works if
the hardware 12C module is being used.
Availability: All devices.
Requires: #USE 12C
Examples: I2C Speed (400000);
Example Files: none
i2c_poll, i2c_start, i2c_stop, i2c_slaveaddr, i2c_isr_state, i2c_write,
Also See: i2c_read, #USE 12C, I12C Overview
i12c_start()
Syntax: i2c_start()
i2c_start(stream)
i2c_start(stream, restart)
Parameters: stream: specify the stream defined in #USE 12C

restart: 2 — new restart is forced instead of start

221

../HelpFile/CCSC/javascript:shortcutlink.click()

CCS C Compiler

Returns:

Function:

Availability:
Requires:

Examples:

Example Files:

Also See:

1 — normal start is performed
0 (or not specified) — restart is done only if the compiler last
encountered a 12C_START and no 12C_STOP

undefined

Issues a start condition when in the 12C master mode. After the
start condition the clock is held low until 12C_WRITE() is called. If
another I12C_start is called in the same function before an i2c_stop
is called, then a special restart condition is issued. Note that
specific 12C protocol depends on the slave device. The
I2C_START function will now accept an optional parameter. If 1 the
compiler assumes the bus is in the stopped state. If 2 the compiler
treats this I2C_START as a restart. If no parameter is passed a 2 is
used only if the compiler compiled a I2C_START last with no
I2C_STOP since.

All devices.

#USE 12C

i2c_start();

i2c_write (0xa0); // Device address

i2c_write (address); // Data to device
i2c_start(); // Restart

i2c _write(Oxal); // to change data direction
data=i2c_read(0); // Now read from slave
i2c_stop();

ex_extee.c with 2416.c

i2c_poll, i2c_speed, i2c_stop, i2c_slaveaddr, i2c_isr_state,
i2c_write, i2c_read, #USE 12C, 12C Overview

12c_stop()

Syntax: i2c_stop()
i2c_stop(stream)
Parameters: stream: (optional) specify stream defined in #USE 12C
Returns: undefined
Function: Issues a stop condition when in the 12C master mode.

222

../HelpFile/CCSC/javascript:shortcutlink.click()
../HelpFile/CCSC/javascript:shortcutlink2.click()

Built-in Functions

Availability:
Requires:

Examples:

Example Files:

All devices.
#USE [2C

i2c_ start // Start condition

07
i2c_write(0xa0); // Device address
i2c write(5); // Device command
i2c write(12); // Device data
i2c_stop(); // Stop condition

ex_extee.c with 2416.c

i2c_poll, i2c_speed, i2c_start, i2c_slaveaddr, i2c_isr_state,

Also See: i2c_write, i2c_read, #USE 12C, 12C Overview
12c_write()
Syntax: i2c_write (data)
i2c_write (stream, data)
Parameters: data is an 8 bit int
stream - specify the stream defined in #USE 12C
This function returns the ACK Bit.
0 means ACK, 1 means NO ACK, 2 means there was a collision if
Returns: in Multi_Master Mode.
This does not return an ACK if using i2c in slave mode.
Function: Sends a single byte over the 12C interface. In master mode this
function will generate a clock with the data and in slave mode it will
wait for the clock from the master. No automatic timeout is
provided in this function. This function returns the ACK bit. The
LSB of the first write after a start determines the direction of data
transfer (0 is master to slave). Note that specific 12C protocol
depends on the slave device.
Availability: All devices.
Requires: #USE 12C
long cmd;
Examples: i2c;é£art();

// Start condition
i2c write(0xa0);// Device address

223

../HelpFile/CCSC/javascript:shortcutlink.click()
../HelpFile/CCSC/javascript:shortcutlink2.click()

CCS C Compiler

Example Files:

Also See:

i2c_write(cmd);// Low byte of command
i2c_write(cmd>>8);// High byte of command
i2c_stop(); // Stop condition

ex_extee.c with 2416.c

i2c_poll, i2c_speed, i2c_start, i2c_stop, i2¢c_slaveaddr,
i2c isr_state, i2c_read, #USE 12C, 12C Overview

input()

Syntax: value = input (pin)

Parameters: Pin to read. Pins are defined in the devices .h file. The actual
value is a bit address. For example, port a (byte 5) bit 3 would
have a value of 5*8+3 or 43 . This is defined as follows: #define
PIN_A343.

The PIN could also be a variable. The variable must have a value
equal to one of the constants (like PIN_A1) to work properly. The
tristate register is updated unless the FAST_IO mode is set on port
A. note that doing I/O with a variable instead of a constant will take
much longer time.

0 (or FALSE) if the pin is low,

Returns: 1 (or TRUE) if the pin is high

Function: This function returns the state of the indicated pin. The method of
I/O is dependent on the last USE *_IO directive. By default with
standard 1/O before the input is done the data direction is set to
input.

Availability: All devices.

Requires: Pin constants are defined in the devices .h file
while (!input(PIN Bl));

// waits for Bl to go high
if (input (PIN_AO0))
Exanuﬂes: printf ("AO0 is now high\r\n");

Example Files:

intlé i=PIN BI1;
while(!i);
//waits for Bl to go high

ex_pulse.c

224

../HelpFile/CCSC/javascript:shortcutlink.click()
../HelpFile/CCSC/javascript:shortcutlink2.click()
../HelpFile/CCSC/javascript:shortcutlink.click()

Built-in Functions

input_x(), output_low(), output_high(), #USE FIXED 10, #USE
Also See: FAST 10, #USE STANDARD IO, General Purpose I/O

input_change_x()

Syntax: value = input_change_a();
value = input_change_bh();
value = input_change_c();
value = input_change_d();
value = input_change_e();
value = input_change_f();
value = input_change_g();
value = input_change_h();
value = input_change_j();
value = input_change_k();

Parameters: None

Returns: An 8-bit or 16-bit int representing the changes on the port.

Function: This function reads the level of the pins on the port and compares
them to the results the last time the input_change_x() function was
called. A 1is returned if the value has changed, 0 if the value is

unchanged.
Availability: All devices.
Requires: None
Examples: pin_check = input change b ();
Example Files: None
input(), input_x(), output_x(), #USE FIXED IO, #USE FAST IO,
Also See: #USE STANDARD |0, General Purpose I/O

input_state()

Syntax: value = input_state(pin)

225

CCS C Compiler

Parameters:

Returns:

Function:

Availability:

Requires:

Examples:

Example Files:

pin to read. Pins are defined in the devices .h file. The actual value
is a bit address. For example, port a (byte 5) bit 3 would have a
value of 5*8+3 or 43 . This is defined as follows: #define PIN_A3
43.

Bit specifying whether pin is high or low. A 1 indicates the pin is
high and a 0 indicates it is low.

This function reads the level of a pin without changing the direction
of the pin as INPUT() does.

All devices.

Nothing

level = input state(pin A3);
printf ("level: %d",level);

None

input(), set_tris_x(), output_low(), output_high(), General Purpose

Also See: /o
input_x()
Syntax: value = input_a()
value = input_b()
value = input_c()
value = input_d()
value = input_e()
value = input_f()
value = input_g()
value = input_h()
value = input_j()
value = input_k()
Parameters: None
Returns: An 8 bit int representing the port input data.
Function: Inputs an entire byte from a port. The direction register is changed

in accordance with the last specified #USE *_|O directive. By

226

Built-in Functions

Availability:
Requires:

Examples:
Example Files:

Also See:

default with standard I/O before the input is done the data direction
is set to input.

All devices.

Nothing

data = input b();
ex_psp.c

input(), output x(), #USE FIXED 10, #USE FAST 10, #USE
STANDARD_10

interrupt_active()

Syntax: interrupt_active (interrupt)

Parameters: Interrupt — constant specifying the interrupt

Returns: Boolean value

Function: The function checks the interrupt flag of the specified interrupt and
returns true in case the flag is set.

Availability: Device with interrupts

Requires: Should have a #INT_xxxx, Constants are defined in the devices .h
file.
interrupt active (INT TIMERO) ;

Examples: interrupt_active (INT_TIMERI1) ;

Example Files:

Also See:

None

disable interrupts() , #INT , Interrupts Overview
clear_interrupt, enable_interrupts()

isalnum(char)
isdigit(char)

isalpha(char)
isgraph(x)

iscntrl(x)
islower(char)

227

../HelpFile/CCSC/javascript:shortcutlink.click()

CCS C Compiler

iIsspace(char) isupper(char) isxdigit(char)
isprint(x) iIspunct(x)
Syntax: value = isalnum(datac)

value = isalpha(datac)
value = isdigit(datac)
value = islower(datac)
value = isspace(datac)
value = isupper(datac)
value = isxdigit(datac)
value = iscntrl(datac)
value = isgraph(datac)
value = isprint(datac)
value = punct(datac)

Parameters: datac is a 8 bit character

0 (or FALSE) if datac dose not match the criteria, 1 (or TRUE) if
Returns: datac does match the criteria.

Function: Tests a character to see if it meets specific criteria as follows:

isalnum(x) Xis0..9,'A".."Z', or'a'..'z'

isalpha(x) Xis'A'..'"Z'or'a'..'’z
isdigit(x) Xis'0'..'9'

islower(x) Xis'a'..'z'

isupper(x) Xis'A'..'Z

isspace(x) Xis a space

isxdigit(x) Xis'0..'9', 'A..'F', or 'a"..'f
iscntrl(x) X is less than a space

isgraph(x) X is greater than a space
isprint(x) X is greater than or equal to a space

X is greater than a space and not a letter or

ispunct(x) number

Availability: All devices.

Requires: #INCLUDE <ctype.h>
char id[20];
if(iéélpha(id[on) {

Examples: valid id=TRUE;

for (i=1;i<strlen (id) ;i++)
valid id=valid id && isalnum(id[i]);
} else

228

Built-in Functions

valid id=FALSE;

Example Files: ex_str.c
Also See: isamong()
iIsamong()
Syntax: result =isamong (value, cstring)
Parameters: value is a character
cstring is a constant sting
0 (or FALSE) if value is not in cstring
Returns: 1 (or TRUE) if value is in cstring
Function: Returns TRUE if a character is one of the characters in a constant
string.
Availability: All devices
Requires: Nothing
char x= 'x';
i%l(isamong (x,
Examples; "0123456789ABCDEFGHIJKLMNOPQRSTUVWXYZ"))

Example Files:

printf ("The character is valid");

#INCLUDE <ctype.h>

isalnum(), isalpha(), isdigit(), isspace(), islower(), isupper(),

Also See: isxdiait

itoa()

Syntax: string = itoa(i32value, i8base, string)
Parameters: i32value is a 32 bit int

i8base is a 8 bit int
string is a pointer to a null terminated string of characters

229

../HelpFile/CCSC/javascript:shortcutlink.click()

CCS C Compiler

Returns:
Function:

Availability:
Requires:

Examples:

Example Files:

Also See:

string is a pointer to a null terminated string of characters

Converts the signed int32 to a string according to the provided
base and returns the converted value if any. If the result cannot be
represented, the function will return O.

All devices

#INCLUDE <stdlib.h>

int32 x=1234;
char string[5];

itoa(x,10, string);
// string is now “1234”

None

None

jump_to_isr()

Syntax: jump_to_isr (address)

Parameters: address is a valid program memory address

Returns: No value

Function: The jump_to_isr function is used when the location of the interrupt
service routines are not at the default location in program memory.
When an interrupt occurs, program execution will jump to the
default location and then jump to the specified address.

Availability: All devices

Requires: Nothing
int global
void global isr(void) {

Examples: jump to isr(isr_address);

Example Files:

Also See:

}

ex_bootloader.c
#BUILD

230

../HelpFile/CCSC/javascript:shortcutlink.click()

kbhit()

Built-in Functions

Syntax:

value = kbhit()
value = kbhit (stream)

Parameters:

Returns:

Function:

Availability:
Requires:

Examples:

Example Files:

Also See:

stream is the stream id assigned to an available RS232 port. If the
stream parameter is not included, the function uses the primary
stream used by getc().

0 (or FALSE) if getc() will need to wait for a character to come in, 1
(or TRUE) if a character is ready for getc()

If the RS232 is under software control this function returns TRUE if
the start bit of a character is being sent on the RS232 RCV pin. If
the RS232 is hardware this function returns TRUE if a character
has been received and is waiting in the hardware buffer for getc()
to read. This function may be used to poll for data without stopping
and waiting for the data to appear. Note that in the case of
software RS232 this function should be called at least 10 times the
bit rate to ensure incoming data is not lost.

All devices.

#USE RS232

char timed getc() {
long timeout;

timeout error=FALSE;
timeout=0;
while (!kbhit () && (++timeout<50000)) // 1/2
// second
delay us(10);
if (kbhit())
return(getc());

else {
timeout error=TRUE;
return (0) ;
}
}
ex_tgetc.c

getc(), #USE RS232, RS232 I/O Overview

231

../HelpFile/CCSC/javascript:shortcutlink.click()

CCS C Compiler

label address()

Syntax: value = label_address(label);

Parameters: label is a C label anywhere in the function

Returns: A 16 bit int in PCB,PCM and a 32 bit int for PCH, PCD

Function: This function obtains the address in ROM of the next instruction
after the label. This is not a normally used function except in very
special situations.

Availability: All devices.

Requires: Nothing
start:

a = (b+c)<<2;
X end:
Examples: printf ("It takes %$lu ROM locations.\r\n",

Example Files:

Also See:

label address (end)-label address (start));

setjimp.h
goto_address()

labs()

Syntax: result = labs (value)
Parameters: value is a 16 bit signed long int
Returns: A 16 bit signed long int
Function: Computes the absolute value of a long integer.
Availability: All devices.
Requires: #INCLUDE <stdlib.h>
if (labs(target value - actual value) > 500)
Examples: printf ("Error is over 500 points\r\n");

232

../HelpFile/CCSC/javascript:shortcutlink.click()

Built-in Functions

Example Files:

Also See:

None

abs()

lcd_contrast()

Syntax: Icd_contrast (contrast)

Parameters: contrast is used to set the internal contrast control resistance
ladder.

Returns: undefined.

Function: This function controls the contrast of the LCD segments with a value
passed in between 0 and 7. A value of 0 will produce the minimum
contrast, 7 will produce the maximum contrast.

Availability: Only on select devices with built-in LCD Driver Module hardware.

Requires: None.
lcd contrast(0); // Minimum Contrast

Examples: lcd contrast(7); // Maximum Contrast

Example Files:

Also See:

None.

Icd load(), lcd_symbol(), setup_lcd(), Internal LCD Overview

lcd_load()

Syntax: Icd_load (buffer_pointer, offset, length);

Parameters: buffer_pointer points to the user data to send to the LCD, offset is
the offset into the LCD segment memory to write the data, length is
the number of bytes to transfer to the LCD segment memory.

Returns: undefined.

Function: This function will load length bytes from buffer_pointer into the

LCD segment memory beginning at offset. The lcd_symbol()
function provides as easier way to write data to the segment
memory.

233

CCS C Compiler

Only on devices with built-in LCD Driver Module hardware.

Availability:
Requires Constants are defined in the devices *.h file.
lcd load(buffer, 0, 16);
Examples: -
Example Files: ex_92lcd.c
Also See: Ilcd _symbol(), setup lcd(), lcd contrast(), Internal LCD Overview

lcd_symbol()

Syntax: Icd_symbol (symbol, bX_addr);

Parameters: symbol is a 8 bit or 16 bit constant.
bX_addr is a bit address representing the segment location to be
used for bit X of the specified symbol.
1-16 segments could be specified.

Returns: undefined
Function: This function loads the bits for the symbol into the segment data
registers for the LCD with each bit address specified. If bit X in
symbol is set, the segment at bX_addr is set, otherwise it is cleared.
The bX_addr is a bit address into the LCD RAM.
Availability: Only on devices with built-in LCD Driver Module hardware.
Requires Constants are defined in the devices *.h file.
byte CONST DIGIT MAP[10] = {OxFC, 0x60, OxDA, OxF2, 0x66,
0xB6, 0xBE, OxEO, OxFE, O0xE6};
#define DIGIT1 COM1+20, COM1+18, COM2+18, COM3+20,
COM2+28, COM1+28, COM2+20, COM3+18
Examples:
for(i = 0; i <= 9; i++) {
led symbol(DIGIT MAP[i], DIGIT1);
delay ms(1000);
}
Example Files: ex_92lcd.c
Also See: setup_lcd(), led_load(), lcd_contrast(), Internal LCD Overview

234

../HelpFile/CCSC/javascript:shortcutlink.click()
../HelpFile/CCSC/javascript:shortcutlink.click()

ldexp()

Built-in Functions

Syntax: result=|dexp (value, exp);

Parameters: value is float
exp is a signed int.

Returns: result is a float with value result times 2 raised to power exp.

Function: The Idexp function multiplies a floating-point number by an integral
power of 2.

Availability: All devices.

Requires: #INCLUDE <math.h>
float result;

. result=1ldexp(.5,0);
Examples: // result is .5

Example Files:

Also See:

None

frexp(), exp(), log(), logl0(), modf()

log()

Syntax: result = log (value)

Parameters: value is a float

Returns: A float

Function: Computes the natural logarithm of the float x. If the argument is less

than or equal to zero or too large, the behavior is undefined.

Note on error handling:

"errno.h" is included then the domain and range errors are stored in
the errno variable. The user can check the errno to see if an error
has occurred and print the error using the perror function.

Domain error occurs in the following cases:
¢ |log: when the argument is negative

235

CCS C Compiler

Availability:
Requires:

Examples:

Example Files:

Also See:

All devices
#INCLUDE <math.h>
Inx = log(x);

None

10g10(), exp(), pow()

log10()

Syntax: result =1og10 (value)

Parameters: value is a float

Returns: A float

Function: Computes the base-ten logarithm of the float x. If the argument is
less than or equal to zero or too large, the behavior is undefined.
Note on error handling:
If "errno.h" is included then the domain and range errors are stored
in the errno variable. The user can check the errno to see if an error
has occurred and print the error using the perror function.
Domain error occurs in the following cases:
¢ log10: when the argument is negative

Availability: All devices

Requires: #INCLUDE <math.h>
do = 1ogl0 d_adc()*(5.0/255))*10;

Examples: ©g10(read ade () *(/)

Example Files:

Also See:

None

log(), exp(), pow()

236

longjmp()

Built-in Functions

Syntax:

longjmp (env, val)

Parameters:

Returns:
Function:

Availability:
Requires:

Examples:
Example Files:

Also See:

env: The data object that will be restored by this function

val: The value that the function setjmp will return. If val is 0 then the
function setjmp will return 1 instead.

After longjmp is completed, program execution continues as if the
corresponding invocation of the setjmp function had just returned the
value specified by val.

Performs the non-local transfer of control.

All devices

#INCLUDE <setjmp.h>

longjmp (jmpbuf, 1);

None

setimp()

make8()

Syntax: i8 = MAKES8(var, offset)

Parameters: var is a 16 or 32 bit integer.
offset is a byte offset of 0,1,2 or 3.

Returns: An 8 bit integer

Function: Extracts the byte at offset from var. Same as: i8 = (((var >> (offset*8))
& 0xff) except it is done with a single byte move.

Availability: All devices

Requires: Nothing
int32 x;

Examples: nt i

y = make8(x,3); // Gets MSB of x

237

CCS C Compiler

Example Files:

Also See:

None

makel6(), make32()

makel6()

Syntax: i16 = MAKE16(varhigh, varlow)

Parameters: varhigh and varlow are 8 bit integers.

Returns: A 16 bit integer

Function: Makes a 16 bit number out of two 8 bit numbers. If either parameter
is 16 or 32 bits only the Isb is used. Same as: i16 =
(int16)(varhigh&O0xff)*0x100+(varlow&0xff) except it is done with two
byte moves.

Availability: All devices

Requires: Nothing
long x;
int hi,lo;

Examples:

Example Files:

Also See:

x = makel6 (hi,lo);
[tc1298.c

make8(), make32()

make32()

Syntax: i32 = MAKE32(varl, var2, var3, var4)

Parameters: varl-4 are a 8 or 16 bit integers. var2-4 are optional.
Returns: A 32 bit integer

Function: Makes a 32 bit number out of any combination of 8 and 16 bit

238

../HelpFile/CCSC/javascript:shortcutlink.click()

Built-in Functions

Availability:
Requires:

Examples:

Example Files:

numbers. Note that the number of parameters may be 1 to 4. The
msbh is first. If the total bits provided is less than 32 then zeros are
added at the msb.

All devices

Nothing
int32 x;
int y;
long z;

x = make32(1,2,3,4); // x is 0x01020304

y=0x12;
z=0x4321;

x = make32(y,z); // x is 0x00124321

x = make32(y,y,z); // x is 0x12124321

ex_fregc.c

make8(), makel6()

Also See:
malloc()
Syntax: ptr=malloc(size)
Parameters: size is an integer representing the number of byes to be allocated.
Returns: A pointer to the allocated memory, if any. Returns null otherwise.
Function: The malloc function allocates space for an object whose size is
specified by size and whose value is indeterminate.
Availability: All devices
Requires: #INCLUDE <stdlibm.h>
int * iptr;
Exanuﬂes: iptr=malloc(10) ;

Example Files:

Also See:

// iptr will point to a block of memory of 10 bytes.
None

realloc(), free(), calloc()

239

../HelpFile/CCSC/javascript:shortcutlink.click()

CCS C Compiler

memcpy()

memmove()

Syntax:

memcpy (destination, source, n)
memmove(destination, source, n)

Parameters:

Returns:

Function:

Availability:
Requires:

Examples:

Example Files:

destination is a pointer to the destination memaory.
source is a pointer to the source memory,.
n is the number of bytes to transfer

undefined

Copies n bytes from source to destination in RAM. Be aware that
array names are pointers where other variable names and structure
names are not (and therefore need a & before them).

Memmove performs a safe copy (overlapping objects doesn't cause a
problem). Copying takes place as if the n characters from the source
are first copied into a temporary array of n characters that doesn't
overlap the destination and source objects. Then the n characters
from the temporary array are copied to destination.

All devices
Nothing
memcpy (&structhA, &structB, sizeof (structh));

memcpy (arrayA, arrayB,sizeof (arrayh));
memcpy (&structA, &databyte, 1);

char a[20]="hello";

memmove (a,a+2,5) ;
// a is now "1llo"

None

strcpy(), memset()

Also See:

memset()

Syntax: memset (destination, value, n)
Parameters: destination is a pointer to memory.

240

Built-in Functions

value is a 8 bit int
nis a 16 bit int.

On PCB and PCM parts n can only be 1-255.

undefine

Returns: efined

Function: Sets n number of bytes, starting at destination, to value. Be aware
that array names are pointers where other variable names and
structure names are not (and therefore need a & before them).

Availability: All devices

Requires: Nothing
memset (arrayA, 0, sizeof (arrayhd));

E les: memset (arrayB, '?', sizeof (arrayB));

xamples: memset (&structhA, OxFF, sizeof (structd));

Example Files: None
memc

Also See: memcpy()

modf()

Syntax: result= modf (value, & integral)

Parameters: value is a float
integral is a float

result is a float

Returns:

Function: The modf function breaks the argument value into integral and
fractional parts, each of which has the same sign as the argument. It
stores the integral part as a float in the object integral.

Availability: All devices

Requires: #INCLUDE <math.h>
float result, integral;

E les: result=modf (123.987, &integral) ;

xamples: // result is .987 and integral is 123.0000

Example Files: None

241

CCS C Compiler

Also See: None

_mul()

Syntax: prod=_mul(vall, val2);

Parameters: vall and val2 are both 8-bit or 16-bit integers
A 16-bit integer if both parameters are 8-hit integers, or a 32-bit integer if

Returns: both parameters are 16-bit integers.

Function: Performs an optimized multiplication. By accepting a different type than it
returns, this function avoids the overhead of converting the parameters
to a larger type.

Availability: ~ Alldevices

Requires: Nothing
int a=50, b=100;

les: long int c;

Examples: c = mul(a, b); //c holds 5000

Example None

Files:

Also See: None

nargs()

Syntax: void foo(char * str, int count, ...)

Parameters: The function can take variable parameters. The user can use

stdarg library to create functions that take variable parameters.

Returns: Function dependent.

Function: The stdarg library allows the user to create functions that supports

variable arguments.

The function that will accept a variable number of arguments must
have at least one actual, known parameters, and it may have more.
The number of arguments is often passed to the function in one of

242

Built-in Functions

Availability:
Requires:

Examples:

Example Files:

Also See:

its actual parameters. If the variable-length argument list can
involve more that one type, the type information is generally
passed as well. Before processing can begin, the function creates
a special argument pointer of type va_list.

All devices

#INCLUDE <stdarg.h>

int foo(int num, ...)

{

int sum = 0;

int i;

va list argptr; // create special argument pointer
va_start (argptr,num); // initialize argptr

for (i=0; i<num; i++)

sum = sum + va_arg(argptr, int);
va_end(argptr); // end variable processing
return sum;

void main ()

{

int total;

total = foo(2,4,6,9,10,2);
}

None

va_start(), va_end(), va arg()

offsetof()

offsetofbit()

Syntax: value = offsetof(stype, field);
value = offsetofbit(stype, field);

Parameters: stype is a structure type name.
Field is a field from the above structure

Returns: An 8 bit byte

Function: These functions return an offset into a structure for the indicated
field.
offsetof returns the offset in bytes and offsetofbit returns the offset
in bits.

Availability: All devices

243

CCS C Compiler

Requires: #INCLUDE <stddef.h>
struct time structure {
int hour, min, sec;
int zone : 4;
intl daylight savings;
}
x = offsetof (time structure, sec);
// x will be 2
Exanuﬂes: x = offsetofbit (time structure, sec);

Example Files:

Also See:

// x will be 16
x = offsetof (time structure,
daylight savings);
// x will be 3
x = offsetofbit (time structure,
daylight savings);
// x will be 28

None

None

output_x()

Syntax:

output_a (value)
output_b (value)
output_c (value)
output_d (value)
output_e (value)
output_f (value)
output_g (value)
output_h (value)
output_j (value)
output_k (value)

Parameters:

Returns:

Function:

value is a 8 bit int

undefined

Output an entire byte to a port. The direction register is changed in
accordance with the last specified #USE *_IO directive.

Availability: All devices, however not all devices have all ports (A-E)

244

Built-in Functions

Requires:

Examples:
Example Files:

Also See:

Nothing

OUTPUT B (0x£0) ;
ex_patg.c
input(), output_low(), output_high(), output_float(), output_bit(),

#USE FIXED 10, #USE FAST 10, #USE STANDARD 10, General
Purpose 1/0

output_bit()

Syntax: output_bit (pin, value)

Parameters: Pins are defined in the devices .h file. The actual number is a bit
address. For example, port a (byte 5) bit 3 would have a value of
5*8+3 or 43 . This is defined as follows: #define PIN_A3 43 . The
PIN could also be a variable. The variable must have a value equal
to one of the constants (like PIN_A1) to work properly. The tristate
register is updated unless the FAST 10 mode is set on port A.
Note that doing I/O with a variable instead of a constant will take
much longer time.

ValueisaloraO0.

Returns: undefined

Function: Outputs the specified value (0 or 1) to the specified I/O pin. The
method of setting the direction
register is determined by the last
#USE *_10 directive.

Availability: All devices.

Requires: Pin constants are defined in the devices .h file
output bit(PIN BO, 0);

// Same as output_ low(pin BO);

output bit (PIN BO,input(PIN Bl));

// Make pin B0 the same as Bl
Examples:

output bit(PIN BO,shift left (&data,l,input (PIN Bl)));
// Output the MSB of data to

// B0 and at the same time

// shift Bl into the LSB of data

intl6 i=PIN BO;

245

../HelpFile/CCSC/javascript:shortcutlink.click()

CCS C Compiler

ouput bit(i,shift left(&data,l,input (PIN Bl)));
//same as above example, but
//uses a variable instead of a constant

Example Files: ex_extee.c with 9356.c

input(), output _low(), output high(), output float(), output_x(),
#USE FIXED 10, #USE FAST 10, #USE STANDARD |0, General

Purpose 1/0

Also See:

output_drive()

Syntax: output_drive(pin)

Parameters: Pins are defined in the devices .h file. The actual value is a bit
address. For example, port a (byte 5) bit 3 would have a value of
5*8+3 or 43 . This is defined as follows: #DEFINE PIN_A3 43 .

Returns: undefined

Function: Sets the specified pin to the output mode.

Availability: All devices.

Requires: Pin constants are defined in the devices.h file.
output drive (pin AO0); // sets pin A0 to output its
value

Examples: output bit (pin BO, input(pin A0)) // makes BO the same
as A0

Example Files: None
input(), output_low(), output_high(), output_bit(), output x(),

Also See: output float()

output_float()

Syntax: output_float (pin)

Parameters: Pins are defined in the devices .h file. The actual value is a bit
address. For example, port a (byte 5) bit 3 would have a value of

246

../HelpFile/CCSC/javascript:shortcutlink.click()
../HelpFile/CCSC/javascript:shortcutlink2.click()

Built-in Functions

5*8+3 or 43 . This is defined as follows: #DEFINE PIN_A3 43 .
The PIN could also be a variable to identify the pin. The variable
must have a value equal to one of the constants (like PIN_A1) to
work properly. Note that doing I/0O with a variable instead of a
constant will take much longer time.

Returns: undefined

Function: Sets the specified pin to the input mode. This will allow the pin to
float high to represent a high on an open collector type of
connection.

Availability: All devices.

Requires: Pin constants are defined in the devices .h file

if((data & 0x80)==0)
output low(pin AO);

Examples: else
output float (pin A0Q);

Example Files: None
input(), output_low(), output_high(), output_bit(), output_x(),

output_drive(), #USE FIXED 10, #USE FAST 10, #USE
STANDARD 10, General Purpose I/O

Also See:

output_high()

Syntax: output_high (pin)

Parameters: Pin to write to. Pins are defined in the devices .h file. The actual
value is a bit address. For example, port a (byte 5) bit 3 would
have a value of 5*8+3 or 43 . This is defined as follows: #DEFINE
PIN_A3 43 . The PIN could also be a variable. The variable must
have a value equal to one of the constants (like PIN_A1) to work
properly. The tristate register is updated unless the FAST_1O mode
is set on port A. Note that doing I/O with a variable instead of a
constant will take much longer time.

Returns: undefined

Function: Sets a given pin to the high state. The method of I/0O used is
dependent on the last USE * _|O directive.

Availability: All devices.

247

CCS C Compiler

Requires:

Examples:

Example Files:

Also See:

Pin constants are defined in the devices .h file
output high (PIN AO);

Intlé i=PIN Al;
output low (PIN_Al);

ex_sqw.c

input(), output_low(), output_float(), output_bit(), output x(), #USE
FIXED |0, #USE FAST 10, #USE STANDARD 10, General

Purpose 1/0

output_low()

Syntax: output_low (pin)

Parameters: Pins are defined in the devices .h file. The actual value is a bit
address. For example, port a (byte 5) bit 3 would have a value of
5*8+3 or 43 . This is defined as follows: #DEFINE PIN_A3 43 .
The PIN could also be a variable. The variable must have a value
equal to one of the constants (like PIN_A1) to work properly. The
tristate register is updated unless the FAST_IO mode is set on port
A. Note that doing I/O with a variable instead of a constant will take
much longer time.

Returns: undefined

Function: Sets a given pin to the ground state. The method of I/O used is
dependent on the last USE *_IO directive.

Availability: All devices.

Requires: Pin constants are defined in the devices .h file
output low (PIN_AO);

Examples: Int16i=PIN Al;

Example Files:

Also See:

output low (PIN Al);
ex_Ssgw.c
input(), output_high(), output_float(), output bit(), output x(),

#USE FIXED 10, #USE FAST 10, #USE STANDARD 10, General
Purpose 1/0

248

../HelpFile/CCSC/javascript:shortcutlink.click()
../HelpFile/CCSC/javascript:shortcutlink.click()

Built-in Functions

output_toggle()

Syntax: output_toggle(pin)

Parameters: Pins are defined in the devices .h file. The actual value is a bit
address. For example, port a (byte 5) bit 3 would have a value of
5*8+3 or 43 . This is defined as follows: #DEFINE PIN_A3 43 .

Returns: Undefined

Function: Toggles the high/low state of the specified pin.

Availability: All devices.

Requires: Pin constants are defined in the devices .h file

Exan1p|es: output toggle (PIN B4);

Example Files:

None

Input(), output_high(), output_low(), output_bit(), output_x()

Also See:
perror()
Syntax: perror(string);
Parameters: string is a constant string or array of characters (null terminated).
Returns: Nothing
Function: This function prints out to STDERR the supplied string and a
description of the last system error (usually a math error).
Availability: All devices.
Requires: #USE RS232, #INCLUDE <errno.h>
x = sin(y);
Examples: if (errno!=0)

perror ("Problem in find area");

249

CCS C Compiler

Example Files:

Also See:

None

RS232 1/0 Overview

pid_busy()

Syntax:

result = pid_busy();

Parameters:

Returns:
Function:

Availability:

Requires:

Examples:

Example Files:

Also See:

None

TRUE if PID module is busy or FALSE is PID module is not busy.
To check if the PID module is busy with a calculation.

All devices with a PID module.

Nothing

pid get result (PID_START ONLY, ADCResult);
while (pid busy()):;
pid get result (PID READ ONLY, &PIDResult);

None

setup_pid(), pid_write(), pid_get_result(), pid _read()

pid_get _result()

Syntax: pid_get_result(set_point, input, &output); /[Start and
Read
pid_get_result(mode, set_point, input); /[Start Only
pid_get_result(mode, &output) /IRead Only
pid_get_result(mode, set_point, input, &output);

Parameters: mode- constant parameter specifying whether to only start the

calculation, only read the result, or start the calculation and read
the result. The options are defined in the device's header file as:
PID_START_READ
PID_READ_ONLY
PID_START_ONLY

250

Built-in Functions

Returns:
Function:

Availability:
Requires:

Examples:

Example Files:

Also See:

set_point -a 16-bit variable or constant representing the set point
of the control system, the value the input from the control system is
compared against to determine the error in the system.

input - a 16-bit variable or constant representing the input from the
control system.

output - a structure that the output of the PID module will be saved
to. Either pass the address of the structure as the parameter, or a
pointer to the structure as the parameter.

Nothing

To pass the set point and input from the control system to the PID
module, start the PID calculation and get the result of the PID
calculation. The PID calculation starts, automatically when the
input is written to the PID module's input registers.

All devices with a PID module.
Constants are defined in the device's .h file.

pid get result (SetPoint, ADCResult, &PIDOutput);
//Start and Read
pid get result (PID START ONLY, SetPoint, ADCResult);
//Start Only
pid get result (PID _READ ONLY, &PIDResult);
//Read Only

None

setup_pid(), pid_read(), pid_write(), pid_busy()

pid_read()

Syntax:

pid_read(register, &output);

Parameters:

register- constant specifying which PID registers to read. The
registers that can be written are defined in the device's header file
as:
- PID_ADDR_ACCUMULATOR
PID_ADDR_OUTPUT
PID_ADDR_Z1
PID_ADDR_Z2

251

CCS C Compiler

Returns:

Function:

Availability:
Requires:

Examples:

Example Files:

Also See:

PID_ADDR_K1
PID_ADDR_K2
PID_ADDR_K3

output -a 16-bit variable, 32-bit variable or structure that specified
PID registers value will be saved to. The size depends on the
registers that are being read. Either pass the address of the
variable or structure as the parameter, or a pointer to the variable
or structure as the parameter.

Nothing

To read the current value of the Accumulator, Output, Z1, Z2, Set
Point, K1, K2 or K3 PID registers. If the PID is busy with a
calculation the function will wait for module to finish calculation
before reading the specified register.

All devices with a PID module.

Constants are defined in the device's .h file.

pid read(PID ADDR 71, &value zl);

None

setup_pid(), pid_write(), pid get result(), pid busy()

pid_write()

Syntax:

pid_write(register, &input);

Parameters:

register- constant specifying which PID registers to write. The
registers that can be written are defined in the device's header file
as:

PID_ADDR_ACCUMULATOR

PID_ADDR_OUTPUT

PID_ADDR_Z1

PID_ADDR_Z2

PID_ADDR_Z3

PID_ADDR_K1

PID_ADDR_K2

PID_ADDR_K3

input -a 16-bit variable, 32-bit variable or structure that contains

252

Built-in Functions

the data to be written. The size depends on the registers that are
being written. Either pass the address of the variable or structure
as the parameter, or a pointer to the variable or structure as the

parameter.

Returns: Nothing

Function: To write a new value for the Accumulator, Output, Z1, Z2, Set
Point, K1, K2 or K3 PID registers. If the PID is busy with a
calculation the function will wait for module to finish the calculation
before writing the specified register.

Availability: All devices with a PID module.

Requires: Constants are defined in the device's .h file.
pid write(PID ADDR Z1, &value zl);

Examples:

Example Files: None

Also See: setup_pid(), pid_read(), pid_get_result(), pid_busy()

pll locked()

Syntax: result=pll_locked();
Parameters: None
A shortint. TRUE if the PLL is locked/ready,
Returns: FALSE if PLL is not locked/ready
Function: This function allows testing the PLL Ready Flag bit to determined if

the PLL is stable and running.

Devices with a Phase Locked Loop (PLL). Not all devices have a
PLL Ready Flag, for those devices the pll_locked() function will

Availability: always return TRUE.
Requires: Nothing.
Examples: while(!pll_locked());

253

CCS C Compiler

Example Files: None
Also See: fluse delay

port_x_pullups ()

Syntax: port_a pullups (value)
port_b_pullups (value)
port_d_pullups (value)
port_e_pullups (value)
port_j_pullups (value)
port_x_pullups (upmask)
port_x_pullups (upmask, downmask)

Parameters: value is TRUE or FALSE on most parts, some parts that allow
pullups to be specified on individual pins permit an 8 bit int here,
one bit for each port pin.
upmask for ports that permit pullups to be specified on a pin
basis. This mask indicates what pins should have pullups
activated. A 1 indicates the pullups is on.
downmask for ports that permit pulldowns to be specified on a pin
basis. This mask indicates what pins should have pulldowns
activated. A 1 indicates the pulldowns is on.

Returns: undefined

Function: Sets the input pullups. TRUE will activate, and a FALSE will
deactivate.
Only 14 and 16 bit devices (PCM and PCH). (Note: use

Availability: SETUP_COUNTERS on PCB parts).

Requires: Nothing

Examples: port a pullups (FALSE);

Example Files: ex_lcdkb.c, kbd.c

Also See: input(), input_x(), output_float()

254

../HelpFile/CCSC/javascript:shortcutlink.click()
../HelpFile/CCSC/javascript:shortcutlink2.click()

pow() pwr()

Built-in Functions

Syntax: f = pow (x,y)
f=pwr (x,y)

Parameters: x and y are of type float

Returns: A float

Function: Calculates X to the Y power.
Note on error handling:
If "errno.h" is included then the domain and range errors are stored
in the errno variable. The user can check the errno to see if an
error has occurred and print the error using the perror function.
Range error occurs in the following case:
e pow: when the argument X is negative

Availability: All Devices

Requires: #INCLUDE <math.h>

Examples: area = pow (size,3.0);

Example Files: None
None

Also See:

printf()

fprintf()

Syntax: printf (string)
or
printf (cstring, values...)
or
printf (fname, cstring, values...)
fprintf (stream, cstring, values...)
Parameters: String is a constant string or an array of characters null terminated.

C String is a constant string. Note that format specifiers cannot be
used in RAM strings.

Values is a list of variables separated by commas, fname is a

255

CCS C Compiler

Returns:

Function:

function name to be used for outputting (default is putc is none is
specified.

Stream is a stream identifier (a constant byte).
undefined

Outputs a string of characters to either the standard RS-232 pins
(first two forms) or to a specified function. Formatting is in
accordance with the string argument. When variables are used this
string must be a constant. The % character is used within the string
to indicate a variable value is to be formatted and output. Longs in
the printf may be 16 or 32 bit. A %% will output a single

%. Formatting rules for the % follows.

See the Expressions > Constants and Trigraph sections of this
manual for other escape character that may be part of the string.

If fprintf() is used then the specified stream is used where printf()
defaults to STDOUT (the last USE RS232).

Format:

The format takes the generic form %nt. n is optional and may be 1-
9 to specify how many characters are to be outputted, or 01-09 to
indicate leading zeros, or 1.1 to 9.9 for floating point and %w
output. t is the type and may be one of the following:

C Character

S String or character

u Unsigned int

d Signed int

Lu Long unsigned int

Ld Long signed int

X Hex int (lower case)

X Hex int (upper case)

Lx Hex long int (lower case)
LX Hex long int (upper case)

f Float with truncated decimal
g Float with rounded decimal
e Float in exponential format
w Unsigned int with decimal place inserted. Specify two

numbers for n. The first is a total field width. The
second is the desired number of decimal places.

Example formats:

Specifier Value=0x12 Value=0xfe
%03u 018 254
%u 18 254

256

Built-in Functions

Availability:
Requires:

Examples:

Example Files:

Also See:

%2u 18 i

%5 18 254
%d 18 -2
%X 12 fe
%X 12 FE
%4X 0012 00FE
%3.1w 1.8 25.4

* Result is undefined - Assume garbage.
All Devices

#USE RS232 (unless fname is used)

byte x,v,2z;

printf ("HiThere") ;

printf ("RTCCValue=>%2x\n\r",get rtcc());
printf ("$2u $X %$4X\n\r",x,vy,z);

printf (LCD PUTC, "n=%u",n);

ex_admm.c, ex_lcdkb.c

atoi(), puts(), putc(), getc() (for a stream example), RS232 /0
Overview

profileout()

Syntax:

profileout(string);
profileout(string, value);
profileout(value);

Parameters:

Returns:

Function:

string is any constant string, and value can be any constant or
variable integer. Despite the length of string the user specifies

here, the code profile run-time will actually only send a one or two
byte identifier tag to the code profile tool to keep transmission and

execution time to a minimum.
Undefined

Typically the code profiler will log and display function

entry and exits, to show the call sequence and profile
the execution time of the functions. By using
profileout(), the user can add any message or display
any variable in the code profile tool. Most messages
sent by profileout() are displayed in the 'Data

257

../HelpFile/CCSC/javascript:shortcutlink.click()
../HelpFile/CCSC/javascript:shortcutlink2.click()

CCS C Compiler

Availability:
Requires:

Examples:

Example Files:

Also See:

Messages' and 'Call Sequence' screens of the code
profile tool.

If a profileout(string) is used and the first word of string
is "START", the code profile tool will then measure the
time it takes until it sees the same profileout(string)
where the "START" is replaced with "STOP". This
measurement is then displayed in the 'Statistics'
screen of the code profile tool, using string as the

name (without "START" or "STOP")
Any device.

#use profile() used somewhere in the project source code.
/I send a simple string.

profileout("This is a text string");

/I send a variable with a string identifier.
profileout("RemoteSensor=", adc);

/I just send a variable.

profileout(adc);

/I time how long a block of code takes to execute.
/I this will be displayed in the 'Statistics' of the

/I Code Profile tool.

profileout("start my algorithm");

/* code goes here */

profileout("stop my algorithm");

ex_profile.c

#use profile(), #profile, Code Profile overview

psmc_blanking()

Syntax: psmc_blanking(unit, rising_edge, rise_time, falling_edge,
fall_time);
Parameters: unit is the PSMC unit number 1-4

rising_edge are the events that are ignored after the signal
activates.

rise_time is the time in ticks (0-255) that the above events are
ignored.

258

Built-in Functions

Returns:

Function:

Availability:

Requires:

Examples:

Example Files:

Also See:

falling_edge are the events that are ignored after the signal goes
inactive.

fall_time is the time in ticks (0-255) that the above events are
ignored.

Events:
° PSMC_EVENT_C10UT
° PSMC_EVENT_C20UT
° PSMC_EVENT_C30UT
° PSMC_EVENT_C40UT
° PSMC_EVENT_IN_PIN
undefined

This function is used when system noise can cause an incorrect
trigger from one of the specified events. This function allows for
ignoring these events for a period of time around either edge of the
signal. See setup_psmc() for a definition of a tick.

Pass a 0 or FALSE for the events to disable blanking for an edge.

All devices equipped with PSMC module.

None

setup_psmc(), psmc_deadband(), psmc_sync(),
psmc_modulation(),
psmc_shutdown(), psmec_duty(), psmc_freq_adjust(), psmc_pins()

259

CCS C Compiler

psmc_deadband()

Syntax: psmc_deadband(unit,rising_edge, falling_edge);

Parameters: unit is the PSMC unit number 1-4

rising_edge is the deadband time in ticks after the signal goes
active. If this function is not called, O is used.

falling_edge is the deadband time in ticks after the signal goes
inactive. If this function is not called, O is used.

Returns: undefined

Function: This function sets the deadband time values. Deadbands are a
gap in time where both sides of a complementary signal are forced
to be inactive. The time values are in ticks. See setup_psmc() for
a definition of a tick.

Availability: All devices equipped with PSMC module.
Requires: undefined
Examples: // 5 tick deadband when the signal goes active.

psmc_deadband (1, 5, 0);

Example Files: None

setup_psmc(), psmc_sync(), psmc_blanking(), psmc_modulation(),
psmc_shutdown(), psmc_duty(), psmc_freg_adjust(), psmc_pins()

Also See:

psmc_duty()

Syntax: psmc_pins(unit, pins_used, pins_active_low);

260

Built-in Functions

Parameters:

Returns:

Function:

Availability:

Requires:

Examples:

Example Files:

Also See:

unit is the PSMC unit number 1-4

fall_time is the time in ticks that the signal goes inactive (after the
start of the period) assuming the event PSMC_EVENT_TIME has
been specified in the setup_psmc().

Undefined

This function changes the fall time (within the period) for the active
signal. This can be used to change the duty of the active pulse.
Note that the time is NOT a percentage nor is it the time the signal
is active. It is the time from the start of the period that the signal
will go inactive. If the rise_time was set to 0, then this time is the
total time the signal will be active.

All devices equipped with PSMC module.

// For a 10khz PWM, based on Fosc divided by 1
// the following sets the duty from
// 0% to 100% baed on the ADC reading
while (TRUE) {
psmc_duty (1, (read adc()* (intl6)10)/25)*
(getenv ("CLOCK") /1000000)) ;

None

setup_psmc(), psmc_deadband(), psmc_sync(), psmc_blanking(),
psmc_modulation(), psmc_shutdown(), psmc_freq_adjust(),

psmc_pins()

psmc_freq_adjust()

Syntax: psmc_freq_adjust(unit, freq_adjust);

Parameters: unit is the PSMC unit number 1-4
freq_adjust is the time in tick/16 increments to add to the period.
The value may be 0-15.

Returns: Undefined

261

CCS C Compiler

Function: This function adds a fraction of a tick to the period time for some
modes of operation.

Availability: All devices equipped with PSMC module.
Requires:

Examples:

Example Files: None

setup_psmc(), psmc_deadband(), psmc_sync(), psmc_blanking(),
psmc_modulation(), psmc_shutdown(), psmc_dutyt(), psmc_pins()

Also See:

psmc_modulation()

Syntax: psmc_modulation(unit, options);

Parameters: unit is the PSMC unit number 1-4

Options may be one of the following:
PSMC_MOD_OFF
PSMC_MOD_ACTIVE
PSMC_MOD_INACTIVE
PSMC_MOD_C10UT
PSMC_MOD_C20UT
PSMC_MOD_C30UT
PSMC_MOD_C40UT
PSMC_MOD_CCP1
PSMC_MOD_CCP2
PSMC_MOD_IN_PIN

The following may be OR'ed with the above

° PSMC_MOD_INVERT

° PSMC_MOD_NOT_BDF

° PSMC_MOD_NOT_ACE
Returns: undefined

262

Built-in Functions

Function:
This function allows some source to control if the PWM is running
or not. The active/inactive are used for software to control the
modulation. The other sources are hardware controlled
modulation. There are also options to invert the inputs, and to
ignore some of the PWM outputs for the purpose of modulation.

Availability: All devices equipped with PSMC module.

Requires:

Example Files: None

Also See: setup_psmc(), psmc_deadband(), psmc_sync(), psmc_blanking(),

psmc_shutdown(), psmc_duty(), psmc_freq adjust(), psmc_pins()

psmc_pins()

Syntax: psmc_pins(unit, pins_used, pins_active_low);

Parameters: unit is the PSMC unit number 1-4

used_pins is the any combination of the following or'ed together:
o PSMC_A

PSMC_B

PSMC_C

PSMC_D

PSMC_E

PSMC_F

PSMC_ON_NEXT_PERIOD

If the last constant is used, all the changes made take effect on the
next period (as opposed to immediate)

pins_active_low is an optional parameter. When used it lists the
same pins from above as the pins that should have an inverted
polarity.

Returns: Undefined

263

CCS C Compiler

Function:

Availability:

Requires:

Examples:

Example Files:

Also See:

This function identified the pins allocated to the PSMC unit, the
polarity of those pins and it enables the PSMC unit. The tri-state
register for each pin is set to the output state.

All devices equipped with PSMC module.

// Simple PWM, 10khz out on pin CO assuming a 20mhz
crystal
// Duty is initially set to 25%
setup psmc(l, PSMC)SINGLE,
PSMC_EVENT TIME | PSMC_SOURCE_FOSC, us (100,
PSMC EVENT TIME, O,
PSMC EVENT TIME, us(25));

psmc_pins (1, PSMC A);

None

setup_psmc(), psmc_deadband(), psmc_sync(), psmc_blanking(),
psmc_modulation(), psmc_shutdown(), psmc_duty(),
psmc_freq_adjust()

psmc_shutdown()

Syntax: psmc_shutdown(unit, options, source, pins_high);
psmc_shutdown(unit, command);
Parameters: unit is the PSMC unit number 1-4

Options may be one of the following:

o PSMC_SHUTDOWN_OFF
o PSMC_SHUTDOWN_NORMAL
o PSMC_SHUTDOWN_AUTO_RESTART

command may be one of the following:

° PSMC_SHUTDOWN_RESTART
° PSMC_SHUTDOWN_FORCE
° PSMC_SHUTDOWN_CHECK

source may be any of the following or'ed together:
o PSMC_SHUTDOWN_C10UT

264

Built-in Functions

Returns:

Function:

Availability:

Requires:

Examples:

Example Files:

Also See:

PSMC_SHUTDOWN_C20UT
PSMC_SHUTDOWN_C30UT
PSMC_SHUTDOWN_C40UT
PSMC_SHUTDOWN_IN_PIN

pins_high is any combination of the following or'ed together:
o PSMC_A

PSMC_B

PSMC_C

PSMC_D

PSMC_E

PSMC_F

Non-zero if the unit is now in shutdown.

This function implements a shutdown capability. when any of the
listed events activate the PSMC unit will shutdown and the output
pins are driver low unless they are listed in the pins that will be
driven high.

The auto restart option will restart when the condition goes
inactive, otherwise a call with the restart command must be used.
Software can force a shutdown with the force command.

All devices equipped with PSMC module.

None

setup_psmc(), psmc_deadband(), psmc_sync(), psmc_blanking(),
psmc_modulation(), psmc_duty(), psmc_freq_adjust(), psmc_pins()

265

CCS C Compiler

psmc_sync()

Syntax: psmc_sync(slave_unit, master_unit, options);
Parameters: slave_unit is the PSMC unit number 1-4 to be controlled.
master_unit is the PSMC unit number 1-4 to be synchronized to
Options may be:
. PSMC_SOURCE_IS_PHASE
. PSMC_SOURCE_IS_PERIOD
. PSMC_DISCONNECT
The following may be OR'ed with the above:
. PSMC_INVERT_DUTY
. PSMC_INVET_PERIOD
Returns: undefined
Function:
This function allows one PSMC unit (the slave) to be synchronized
(the outputs) with another PSMC unit (the master).
Availability: All devices equipped with PSMC module.
Requires:
Examples:

Example Files:

Also See:

None

setup_psmc(), psmc_deadband(), psmc_sync(),
psmc_modulation(),
psmc_shutdown(), psmc_duty(), psmc_freq adjust(), psmc_pins()

266

psp_output_full()

Built-in Functions

psp_input_full()

psp_overflow()

Syntax:

result = psp_output_full()
result = psp_input_full()
result = psp_overflow()
result = psp_error();
result = psp_timeout();

/[EPMP only
/I[EPMP only

Parameters:

Returns:

Function:

Availability:

Requires:

Examples:

Example Files:

Also See:

None
A0 (FALSE) or 1 (TRUE)

These functions check the Parallel Slave Port (PSP) for the
indicated conditions and return TRUE or FALSE.

This function is only available on devices with PSP hardware on
chips.

Nothing

while (psp_output full()) ;
psp_data = command;
while (!psp input full()) ;
if (psp_overflow())

error = TRUE;
else

data = psp_data;

ex _psp.c

setup_psp(), PSP Overview

putc()

putchar()

fputc()

Syntax: putc (cdata)

putchar (cdata)

fputc(cdata, stream)
Parameters: cdata is a 8 bit character.

Stream is a stream identifier (a constant byte)
Returns: undefined

267

../HelpFile/CCSC/javascript:shortcutlink.click()

CCS C Compiler

Function:

Availability:
Requires:

Examples:

Example Files:

Also See:

This function sends a character over the RS232 XMIT pin. A #USE
RS232 must appear before this call to determine the baud rate and
pin used. The #USE RS232 remains in effect until another is
encountered in the file.

If fputc() is used then the specified stream is used where putc()
defaults to STDOUT (the last USE RS232).

All devices

#USE RS232
putc('*");

for (i=0; 1i<10; i++)

putc (buffer[i]);
putc(13);

ex_tgetc.c
getc(), printf(), #USE RS232, RS232 1/O Overview

putc_send();

fputc_send();

Syntax: putc_send();
fputc_send(stream);

Parameters: stream — parameter specifying the stream defined in #USE
RS232.

Returns: Nothing

Function: Function used to transmit bytes loaded in transmit buffer over

RS232. Depending on the options used in #USE RS232 controls if
function is available and how it works.

If using hardware UARTx with NOTXISR option it will check if
currently transmitting. If not transmitting it will then check for data
in transmit buffer. If there is data in transmit buffer it will load next
byte from transmit buffer into the hardware TX buffer, unless
using CTS flow control option. In that case it will first check to see
if CTS line is at its active state before loading next byte from
transmit buffer into the hardware TX buffer.

If using hardware UARTx with TXISR option, function only
available if using CTS flow control option, it will test to see if the
TBEX interrupt is enabled. If not enabled it will then test for data in
transmit buffer to send. |If there is data to send it will then test the

268

../HelpFile/CCSC/javascript:shortcutlink.click()

Built-in Functions

Availability:
Requires:

Examples:

Example Files:

CTS flow control line and if at its active state it will enable the
TBEX interrupt. When using the TXISR mode the TBEXx interrupt
takes care off moving data from the transmit buffer into the
hardware TX buffer.

If using software RS232, only useful if using CTS flow control, it
will check if there is data in transmit buffer to send. If there is data
it will then check the CTS flow control line, and if at its active state
it will clock out the next data byte.

All devices

#USE RS232
#USE_RS232(UART1,BAUD=9600,TRANSMIT_BUFFER=50,NO
TXISR)
printf(“Testing Transmit Buffer”);
while(TRUE)X

putc_send();

None

USE RS232(), RCV_BUFFER FULL(), TX BUFFER FULL(),
TX _BUFFER BYTES(), GET(), PUTC() RINTF(),

Also See: SETUP_UART(),
PUTC()_SEND

puts() fputs()

Syntax: puts (string).
fputs (string, stream)

Parameters: string is a constant string or a character array (null-terminated).
Stream is a stream identifier (a constant byte)

Returns: undefined

Function: Sends each character in the string out the RS232 pin using putc().
After the string is sent a CARRIAGE-RETURN (13) and LINE-
FEED (10) are sent. In general printf() is more useful than puts().
If fputs() is used then the specified stream is used where puts()
defaults to STDOUT (the last USE RS232)

Availability: All devices

Requires: #USE RS232

269

CCS C Compiler

puts(" -—-———————- "oy
Examples: EEEzE l___ljf____l ;
Example Files: None
Also See: printf(), gets(), RS232 1/O Overview

pwm_ off()

Syntax: pwm_off([stream]);

Parameters: stream — optional parameter specifying the stream
defined in #USE PWM.

Returns: Nothing.

Function: To turn off the PWM signal.

Availability: All devices.

Requires: #USE PWM

#USE PWM(OUTPUT=PIN_C2, FREQUENCY=10kHz, DUTY=25)
while(TRUE){
if(kbhit(){

¢ = getc();
Examples:
if(c=="F)
pwm_off();
}
Example Files: None
Also See: #use pwm, pwm_on(), pwm_set duty percent(),
pwm_set duty(), pwm_set frequency()
pwm_on()
Syntax: pwm_on([stream]);
Parameters: stream — optional parameter specifying the stream
defined in #USE PWM.
Returns: Nothing.

270

Built-in Functions

Function:

Availability:
Requires:

Examples:

Example Files:

Also See:

To turn on the PWM signal.

All devices.

#USE PWM

#USE PWM(OUTPUT=PIN7C2, FREQUENCY=10kHz, DUTY=25)
while (TRUE) {
if (kbhit ()) {
c = getc();

if(c=='0")
pwm_on () ;
}
}
None

#use pwm, pwm_off(), pwm_set duty percent(),
pwm_set duty(), pwm set frequency()

pwm_set_duty()

Syntax: pwm_set_duty([stream],duty);

Parameters: stream — optional parameter specifying the stream defined in
#USE PWM.
duty — an int16 constant or variable specifying the new PWM high
time.

Returns: Nothing.

Function: To change the duty cycle of the PWM signal. The duty cycle
percentage depends on the period of the PWM signal. This
function is faster than pwm_set_duty_percent(), but requires you
to know what the period of the PWM signal is.

Availability: All devices.

Requires: #USE PWM

. #USE PWM (OUTPUT=PIN C2, FREQUENCY=10kHz, DUTY=25)

Examples: -

Example Files:

Also See:

None

#use pwm, pwm_on(), pwm_off(), pwm_set frequency(),
pwm_set duty percent()

271

CCS C Compiler

pwm_set _duty percent

Syntax: pwm_set_duty_percent([stream]), percent

Parameters: stream — optional parameter specifying the stream defined in
#USE PWM.
percent- an intl6 constant or variable ranging from 0 to 1000
specifying the new PWM duty cycle, D is 0% and 1000 is 100.0%.

Returns: Nothing.

Function: To change the duty cycle of the PWM signal. Duty cycle
percentage is based off the current frequency/period of the PWM
signal.

Availability: All devices.

Requires: #USE PWM
#USE PWM (OUTPUT=PIN C2, FREQUENCY=10kHz, DUTY=25)

Examples: pwm_set duty percent (500) ; //set PWM duty cycle to
50%

Example Files: None

Also See:

#use pwm, pwm_on(), pwm_off(),
pwm_set frequency(), pwm_set_duty()

pwm_set frequency

Syntax: pwm_set_frequency([stream],frequency);

Parameters: stream — optional parameter specifying the stream
defined in #USE PWM.
frequency — an int32 constant or variable specifying
the new PWM frequency.

Returns: Nothing.

Function: To change the frequency of the PWM signal.
Warning this may change the resolution of the
PWM signal.

Availability: All devices.

Requires: #USE PWM

272

Built-in Functions

#USE PWM (OUTPUT=PIN C2, FREQUENCY=10kHz, DUTY=25)

Examples: pwm_set frequency(1000); //set PWM frequency to 1lkHz
Example Files: None
Also See: #use_pwm, pwm_on(), pwm_off(),

pwm_set duty percent, pwm_set duty()

pwml interrupt_active()
pwm2_interrupt_active()
pwm3_interrupt_active()
pwm4 _interrupt_active()
pwmb_interrupt_active()
pwmo6_interrupt_active()

Syntax: result_pwm1_interrupt_active (interrupt)
result_pwm2_interrupt_active (interrupt)
result_pwm3_interrupt_active (interrupt)
result_pwmd4_interrupt_active (interrupt)
result_pwmb5_interrupt_active (interrupt)
result_pwm6_interrupt_active (interrupt)

Parameters: interrupt - 8-bit constant or variable. Constants are defined in
the device's header file as:
° PWM_PERIOD_INTERRUPT
° PWM_DUTY_INTERRUPT
° PWM_PHASE_INTERRUPT
° PWM_OFFSET_INTERRUPT
Returns: TRUE if interrupt is active. FALSE if interrupt is not active.
Function: Tests to see if one of the above PWM interrupts is active,
interrupt flag is set.
Availability: Devices with a 16-bit PWM module.
Requires: Nothing
if (pwml interrupt active (PWM PERIOD INTERRUPT))
Examp|es; clear pwml interrupt (PWM PERIOD INTERRUPT) ;

273

CCS C Compiler

Example Files:

setup_pwm(), set_pwm_duty(), set pwm_phase(),
set_pwm_period(), set pwm_offset(), enable pwm interrupt(),
clear pwm interrupt(), disable pwm interrupt()

Also See:

gei_get_count()

Syntax: value = gei_get_count([type]);

Parameters: type - Optional parameter to specify which counter to get, defaults
to position counter. Defined in devices .h file as:

QEI_GET_POSITION_COUNT
QEI_GET_VELOCITY_COUNT

The 16-bit value of the position counter or velocity counter.

Returns:
Function: Reads the current 16-bit value of the position or velocity counter.
Availability: Devices that have the QEI module.
Requires: Nothing.
value = gei get counter (QEI GET POSITION_ COUNT) ;

E les: value = gei get counter();

xamples: value = gei get counter (QEI_GET VELOCITY COUNT);
Example Files: None
Also See setup_qei() , gei_set count() , gei_status().

gei_set_count()

Syntax: gei_set_count(value);

Parameters: value- The 16-bit value of the position counter.
Returns: void

Function: Write a 16-bit value to the position counter.
Availability: Devices that have the QEI module.

274

Built-in Functions

Requires:

Examples:
Example Files:

Also See:

Nothing.
gei set counter (value);
None

setup_qgei() , gei_get _count() , gei_status().

gei_status()

Syntax: status = gei_status();

Parameters: None

Returns: The status of the QEI module.
Function: Returns the status of the QEI module.
Availability: Devices that have the QEI module.
Requires: Nothing.

Examples: status = gei status();

Example Files: None

Also See:

setup_qei() , gei_set count() , gei_get count().

gsort()

Syntax: gsort (base, num, width, compare)
Parameters: base: Pointer to array of sort data
num: Number of elements
width: Width of elements
compare: Function that compares two elements
Returns: None
Function: Performs the shell-metzner sort (not the quick sort algorithm). The

contents of the array are sorted into ascending order according to

275

CCS C Compiler

a comparison function pointed to by compare.

Availability: All devices
Requires: #INCLUDE <stdlib.h>
int nums[5]={ 2,3,1,5,4};
int compar (void *argl,void *arg2);
void main () {
gsort (nums, 5, sizeof(int), compar);
}
EanHNESZ int compar (void *argl,void *arg2) {
if (* (int *) argl < (* (int *) arg2) return -1
else if (* (int *) argl == (* (int *) arg2)
return 0
else return 1;
}
Example Files: ex_gsort.c
rch
Also See: bsearc

rand()

Syntax: re=rand()

Parameters: None

A pseudo-random integer.

Returns:

Function: The rand function returns a sequence of pseudo-random integers
in the range of 0 to RAND_MAX.

Availability: All devices

Requires: #INCLUDE <STDLIB.H>

276

../HelpFile/CCSC/javascript:shortcutlink.click()

Built-in Functions

Examples:

Example Files:

Also See:

int I;
I=rand() ;

None

srand()

rcv_buffer _bytes()

Syntax: value = rcv_buffer_bytes([stream]);
Parameters: stream — optional parameter specifying the stream defined in
#USE RS232.
Returns: Number of bytes in receive buffer that still need to be retrieved.
Function: Function to determine the number of bytes in receive buffer that
still need to be retrieved.
Availability: All devices
Requires: #USE RS232
#USE_RS232(UART1,BAUD=9600,RECEIVE_BUF
FER=100)
void main(void) {
Examples: char c;
if(rcv_buffer_bytes() > 10)
¢ = getc();
Example Files: None

Also See:

USE_RS232(), RCV_BUFFER FULL(), TX BUFFER_FULL(),
TX BUFFER _BYTES(), GETC(), PUTC() ,PRINTE(),
SETUP_UART(), PUTC_SEND()

rcv_buffer_full()

Syntax:

value = rcv_buffer_full([stream]);

Parameters:

stream — optional parameter specifying the stream defined in
#USE RS232.

277

CCS C Compiler

Returns:

Function:

Availability:

Requires:

Examples:

Example Files:

TRUE if receive buffer is full, FALSE otherwise.

Function to test if the receive buffer is full.

All devices

#USE RS232

#USE_RS232(UART1,BAUD=9600,RECEIVE_BUF
FER=100)
void main(void) {

char c;

if(rcv_buffer_full())

¢ = getc();

None

USE_RS232(),RCV_BUFFER BYTES(), TX BUFFER BYTES(

Also See:) .,IX BUFFER FULL(), GETC(), PUTC(), PRINTFE(),
SETUP_UART(), PUTC SEND()

read adc()

Syntax: value =read_adc ([mode])

Parameters: mode is an optional parameter. If used the values may be:
ADC_START_AND_READ (continually takes readings, this is the
default)

ADC_START_ONLY (starts the conversion and returns)
ADC_READ_ONLY (reads last conversion result)
Returns: Either a 8 or 16 bit int depending on #DEVICE ADC-= directive.
Function: This function will read the digital value from the analog to digital

converter. Calls to setup_adc(), setup_adc_ports() and
set_adc_channel() should be made sometime before this function
is called. The range of the return value depends on number of bits
in the chips A/D converter and the setting in the #DEVICE ADC=
directive as follows:

#DEVIC 8bit 10bit 11bit 12bit 16 bit

E

ADC=8 00- 00-FF OO-FF O00-FF O00-FF
FF

QDCZl 0-3FF x 0-3FF x

278

Built-in Functions

Availability:
Requires:

Examples:

Example Files:

Also See:

ADC=1 x X 0-7FF x X

1

ADC=1 OFF O0- 0- 0-

6 00 FFCO FFEO FFro OFFFF

Note: xis not defined
This function is only available on devices with A/D hardware.

Pin constants are defined in the devices .h file.

setup adc(ADC CLOCK INTERNAL);
setup adc ports(ALL ANALOG);
set _adc_channel(1);

while (input (PIN BO)) {
delay ms(5000);
value = read adc();
printf ("A/D value = %2x\n\r", value);

}
read adc (ADC_START ONLY) ;

sleep();
value=read_adc (ADC_READ ONLY) ;

ex_admm.c, ex 14kad.c

setup_adc(), set_adc_channel(), setup_adc_ports(),
#DEVICE, ADC Overview

read bank()

Syntax: value = read_bank (bank, offset)

Parameters: bank is the physical RAM bank 1-3 (depending on the device)
offset is the offset into user RAM for that bank (starts at 0),

Returns: 8 bit int

Function: Read a data byte from the user RAM area of the specified

memory bank. This function may be used on some devices where
full RAM access by auto variables is not efficient. For example,
setting the pointer size to 5 bits on the PIC16C57 chip will
generate the most efficient ROM code. However, auto variables
can not be above 1Fh. Instead of going to 8 bit pointers, you can
save ROM by using this function to read from the hard-to-reach
banks. In this case, the bank may be 1-3 and the offset may be O-
15.

279

../HelpFile/CCSC/javascript:shortcutlink.click()
../HelpFile/CCSC/javascript:shortcutlink2.click()

CCS C Compiler

Availability:

Requires:

Examples:

Example Files:

Also See:

All devices but only useful on PCB parts with memory over 1Fh
and PCM parts with memory over FFh.

Nothing

// See write bank() example to see
// how we got the data
// Moves data from buffer to LCD

i=0;

do {
c=read bank(1l,i++);
1f(c!=0x13)

lcd putc(c);
} while (c!=0x13);

ex_psp.c

write_bank(), and the "Common Questions and Answers" section
for more information.

read_calibration()

Syntax: value =read_calibration (n)
Parameters: n is an offset into calibration memory beginning at O
Returns: An 8 bit byte
Function: The read_calibration function reads location "n" of the 14000-
calibration memory.
Availability: This function is only available on the PIC14000.
Requires: Nothing
. fin = read_calibration(16);
Examples:

Example Files:

Also See:

ex_l4kad.c with 14kcal.c

None

280

../HelpFile/CCSC/javascript:shortcutlink.click()
../HelpFile/CCSC/javascript:shortcutlink.click()
../HelpFile/CCSC/javascript:shortcutlink2.click()

Built-in Functions

read_configuration_memory()

Syntax: read_configuration_memory([offset], ramPtr, n)

Parameters: ramPtr is the destination pointer for the read results
count is an 8 bit integer
offset is an optional parameter specifying the offset into
configuration memory to start reading from, offset defaults to zero
if not used.

Returns: undefined

Function: For PIC18-Reads n bytes of configuration memory and saves the
values to ramPtr.
For Enhanced16 devices function reads User ID, Device ID and
configuration memory regions.

Availability: All PIC18 Flash and Enhanced16 devices

Requires: Nothing
int datal[6];

EX&H“NESZ read_configuration memory (data, 6) ;

Example Files:

Also See:

None

write _configuration _memory(), read _program_memory(),
Configuration Memory Overview,

read _eeprom()

Syntax: value =read_eeprom (address)

Parameters: address is an 8 bit or 16 bit int depending on the part

Returns: An 8 bit int

Function: Reads a byte from the specified data EEPROM address. The
address begins at 0 and the range depends on the part.

Availability: This command is only for parts with built-in EEPROMS

281

CCS C Compiler

Requires:

Examples:

Example Files:

Also See:

Nothing

#define LAST VOLUME 10
volume = read EEPROM (LAST VOLUME) ;

None

write _eeprom(), Data Eeprom Overview

read _extended ram()

Syntax: read_extended_ram(page,address,data,count);

Parameters: page — the page in extended RAM to read from
address — the address on the selected page to start reading from
data — pointer to the variable to return the data to
count — the number of bytes to read (0-32768)

Returns: Undefined

Function: To read data from the extended RAM of the PIC.

S On devices with more then 30K of RAM.

Availability:

Requires: Nothing
unsigned int8 datal8];

Examples: read extended ram(1l,0x0000,data,8);

Example Files:

Also See:

None

read extended ram(), Extended RAM Overview

read_program_memory()
read_external_memory()

Syntax: READ_PROGRAM_MEMORY (address, dataptr, count);
READ_EXTERNAL_MEMORY (address, dataptr, count);
Parameters: address is 16 bits on PCM parts and 32 bits on PCH parts . The

282

Built-in Functions

Returns:

Function:

Availability:
Requires:

Examples:

Example Files:

Also See:

least significant bit should always be 0 in PCM.
dataptr is a pointer to one or more bytes.
count is a 8 bit integer on PIC16 and 16-bit for PIC18

undefined

Reads count bytes from program memory at address to RAM at
dataptr. B oth of these functions operate exactly the same.

Only devices that allow reads from program memory.

Nothing

char buffer[64];
read external memory(0x40000, buffer, 64);

None

write program memory(), External memory overview , Program
Eeprom Overview

read _program_eeprom()

Syntax: value =read_program_eeprom (address)
Parameters: address is 16 bits on PCM parts and 32 bits on PCH parts
Returns: 16 bits
Function: Reads data from the program memory.
Availability: Only devices that allow reads from program memory.
Requires: Nothing
checksum = 0;
for (i=0;1i<8196;i++)
Examples: checksum®=read program eeprom(i);

Example Files:

Also See:

printf ("Checksum is %2X\r\n",checksum) ;
None

write_program_eeprom(), write _eeprom(), read _eeprom(),
Program Eeprom Overview

283

CCS C Compiler

read_rom_memory()

Syntax: READ_ROM_MEMORY (address, dataptr, count);

Parameters: address is 32 bits. The least significant bit should always be 0.
dataptr is a pointer to one or more bytes.
count is a 16 bit integer

Returns: undefined

Function: Reads count bytes from program memory at address to dataptr.
Due to the 24 bit program instruction size on the PCD devices,
three bytes are read from each address location.

Availability: Only devices that allow reads from program memory.

Requires: Nothing
char buffer([64];

Exanuﬂes; read program memory (0x40000, buffer, 64);

Example Files:

Also See:

None

write_program_eeprom() , write_eeprom(), read eeprom(),
Program eeprom overview

read sd_adc()

Syntax: value =read_sd_adc();

Parameters: None

Returns: A signed 32 bit int.

Function: To poll the SDRDY bit and if set return the signed 32 bit value

stored in the SD1IRESH and SD1RESL registers, and clear the
SDRDY bit. The result returned depends on settings made with
the setup_sd_adc() function, but will always be a signed int32
value with the most significant bits being meaningful. Refer to
Section 66, 16-bit Sigma-Delta A/D Converter, of the PIC24F
Family Reference Manual for more information on the module and

284

Built-in Functions

Availability:

Examples:

Example Files:
Also See:

the result format.

Only devices with a Sigma-Delta Analog to Digital Converter (SD
ADC) module.

value = read_sd_adc()
None

setup _sd _adc(), set sd adc calibration(), set sd_adc channel()

realloc()

Syntax:

realloc (ptr, size)

Parameters:

Returns:

Function:

Availability:
Requires:

Examples:

Example Files:

ptr is a null pointer or a pointer previously returned by calloc or
malloc or realloc function, size is an integer representing the
number of byes to be allocated.

A pointer to the possibly moved allocated memory, if
any. Returns null otherwise.

The realloc function changes the size of the object pointed to by
the ptr to the size specified by the size. The contents of the object
shall be unchanged up to the lesser of new and old sizes. If the
new size is larger, the value of the newly allocated space is
indeterminate. If ptr is a null pointer, the realloc function behaves
like malloc function for the specified size. If the ptr does not match
a pointer earlier returned by the calloc, malloc or realloc, or if the
space has been deallocated by a call to free or realloc function,
the behavior is undefined. If the space cannot be allocated, the
object pointed to by ptr is unchanged. If size is zero and the ptr is
not a null pointer, the object is to be freed.

All devices

#INCLUDE <stdlibm.h>
int * iptr;
iptr=malloc(10);

realloc (iptr,20)

// iptr will point to a block of memory of 20 bytes,
if available.

None

285

CCS C Compiler

malloc(), free(), calloc()

Also See:
release_io|()
Syntax: release_io();
Parameters: none
Returns: nothing
Function: The function releases the 1/O pins after the device wakes up from
deep sleep, allowing
the state of the 1/O pins to change
Availability: Devices with a deep sleep module.
Requires: Nothing
unsigned intlé restart;
. restart = restart cause();
Examples: -
if (restart == RTC_FROM DS)
release io();
Example Files: None
Also See: sleep()

reset_cpu()

Syntax: reset_cpu()
Parameters: None
. This function never returns

Returns:

Function: This is a general purpose device reset. It will jump to location 0
on PCB and PCM parts and also reset the registers to power-up
state on the PIC18XXX.

Availability: All devices

286

Built-in Functions

Requires: Nothing

if (checksum!=0)
Examples: reset_cpu();
Example Files: None
Also See: None

restart_cause()

Syntax: value = restart_cause()

Parameters: None

A value indicating the cause of the last processor reset. The
actual values are device dependent. See the device .h file for
specific values for a specific device. Some example values are:

Returns: WDT_FROM_SLEEP, WDT_TIMEOUT, MCLR_FROM_SLEEP
and NORMAL_POWER_UP.
Function: Returns the cause of the last processor reset.
Availability: All devices
Requires: Constants are defined in the devices .h file.
switch (restart cause()) {
case WDT FROM SLEEP:
case WDT TIMEOUT:
Examples:
handle_error();
}
Example Files: ex_wdt.c
Also See: restart wdt(), reset_cpu()

restart_wdt()

Syntax: restart_wdt()

Parameters: None

287

../HelpFile/CCSC/javascript:shortcutlink.click()

CCS C Compiler

Returns:
Function:

Availability:
Requires:

Examples:

Example Files:

Also See:

undefined

Restarts the watchdog timer. If the watchdog timer is enabled,
this must be called periodically to prevent the processor from
resetting.

The watchdog timer is used to cause a hardware reset if the
software appears to be stuck.

The timer must be enabled, the timeout time set and software
must periodically restart the timer. These are done differently on
the PCB/PCM and PCH parts as follows:

PCB/PCM PCH
Enable/Disable #fuses setup_wdt()
Timeout time setup_wdt() #fuses
restart restart_ wdt() restart_wdt()
All devices
#FUSES
#fuses WDT // PCB/PCM example
// See setup wdt for a
// PIC18 example
main () {

setup_wdt (WDT_2304MS) ;
while (TRUE) {
restart wdt();
perform activity();
}
}

ex_wdt.c

#FUSES, setup_wdt(), WDT or Watch Dog Timer Overview

rotate left()

Syntax: rotate_left (address, bytes)
Parameters: address is a pointer to memory

bytes is a count of the number of bytes to work with.
Returns: undefined

288

../HelpFile/CCSC/javascript:shortcutlink.click()

Built-in Functions

Function: Rotates a bit through an array or structure. The address may be
an array identifier or an address to a byte or structure (such as
&data). Bit 0 of the lowest BYTE in RAM is considered the LSB.

Availability: All devices
Requires: Nothing
x = 0x86;
les: rotate left(&x, 1);
Examples: // x 1is now 0x0d
Example Files: None
Also See: rotate_right(), shift_left(), shift_right()

rotate _right()

Syntax: rotate_right (address, bytes)

Parameters: address is a pointer to memory,
bytes is a count of the number of bytes to work with.

Returns: undefined
Function: Rotates a bit through an array or structure. The address may be
an array identifier or an address to a byte or structure (such as
&data). Bit 0 of the lowest BYTE in RAM is considered the LSB.
Availability: All devices
Requires: Nothing
struct {
int cell 1 : 4;
int cell 2 : 4;
int cell 3 : 4;
int cell 4 : 4; } cells;
Examples: rotate right(&cells, 2);
rotate right(&cells, 2);
rotate right(&cells, 2);
rotate right(&cells, 2);
// cell 1->4, 2->1, 3->2 and 4-> 3
Example Files: None

289

CCS C Compiler

Also See:

rotate left(), shift_left(), shift right()

rtc_alarm_read()

Syntax: rtc_alarm_read(&datetime);

Parameters: datetime- A structure that will contain the values to be written to
the alarm in the RTCC module.
Structure used in read and write functions are defined in the
device header file
as rtc_time_t

Returns: void

Function: Reads the date and time from the alarm in the RTCC module to
structure datetime.

Availability: Devices that have the RTCC module.

Requires: Nothing.
rtc alarm read(&datetime) ;

Examples: - -

Example Files:

Also See:

None

rtc_read(), rtc_alarm_read(), ric_alarm_write(), setup_rtc_alarm(),
rtc_write(), setup_rtc()

rtc_alarm_write()

Syntax: rtc_alarm_write(&datetime);

Parameters: datetime- A structure that will contain the values to be written to
the alarm in the RTCC module.
Structure used in read and write functions are defined in the
device header file as rtc_time_t.

Returns: void

Function: Writes the date and time to the alarm in the RTCC module as

specified in the structure date time.

290

Built-in Functions

Availability:
Requires:

Examples:
Example Files:

Devices that have the RTCC module.
Nothing.

rtc_alarm write(&datetime);
None

ric_read(), rtc_alarm read(), ric_alarm_write(), setup _rtc_alarm(),

Also See: rtc_write(), setup _rtc()

rtc_read()

Syntax: rtc_read(&datetime);

Parameters: datetime- A structure that will contain the values returned by the
RTCC module.
Structure used in read and write functions are defined in the
device header file as rtc_time_t.

Returns: void

Function: Reads the current value of Time and Date from the RTCC
module and stores the structure date time.

Availability: Devices that have the RTCC module.

Requires: Nothing.

Examples: rtc_read(&datetime);

Example Files:

ex_rtcc.c
rtc_read(), rtc_alarm_read(), rtc_alarm_write(),

Also See: setup_rtc_alarm(), rtc_write(), setup_rtc()

rtc_write()

Syntax: rtc_write(&datetime);

Parameters: datetime- A structure that will contain the values to be written to

291

../HelpFile/CCSC/javascript:shortcutlink.click()

CCS C Compiler

the RTCC module.

Structure used in read and write functions are defined in the
device header file as rtc_time_t.

Returns: void
Function: Writes the date and time to the RTCC module as specified in the
structure date time.
S Devices that have the RTCC module.
Availability:
Requires: Nothing.
rtc write (&datetime);
Examples: -
Example Files: ex_rtcc.c
rtc_read() , rtc_alarm_read() , rtc_alarm_write() ,
Also See: setup_rtc_alarm() , rtc_write(), setup_rtc()

rtos_await()

The RTOS is only included in the PCW, PCWH and PCWHD software packages.

Syntax: rtos_await (expre)

Parameters: expre is a logical expression.

Returns: None

Function: This function can only be used in an RTOS task. This function

waits for expre to be true before continuing execution of the rest
of the code of the RTOS task. This function allows other tasks to
execute while the task waits for expre to be true.

Availability: All devices
Requires: #USE RTOS
Examples: rtos_await(kbhit());
Also See: None

292

../HelpFile/CCSC/javascript:shortcutlink.click()

rtos_disable()

Built-in Functions

The RTOS is only included in the PCW, PCWH, and PCWHD software packages.

Syntax: rtos_disable (task)

Parameters: task is the identifier of a function that is being used as an RTOS
task.

Returns: None

Function: This function disables a task which causes the task to not
execute until enabled by rtos_enable(). All tasks are enabled by
default.

Availability: All devices

Requires: #USE RTOS

Examples: rtos_disable (toggle green)

Also See: rtos enable()

rtos_enable()

The RTOS is only included in the PCW, PCWH, and PCWHD software packages.

Syntax: rtos_enable (task)

Parameters: task is the identifier of a function that is being used as an RTOS
task.

Returns: None

Function: This function enables a task to execute at it's specified rate.

Availability: All devices

Requires: #USE RTOS

293

CCS C Compiler

rtos enable (toggle green);
Examples: - 999

Also See: rtos disable()

rtos_msg_poll()

The RTOS is only included in the PCW, PCWH and PCWHD software packages.

Syntax: i =rtos_msg_poll()

Parameters: None

Returns: An integer that specifies how many messages are in the queue.

Function: This function can only be used inside an RTOS task. This function
returns the number of messages that are in the queue for the task
that the rtos_msg_poll() function is used in.

Availability: All devices

Requires: #USE RTOS

Exan1p|es: if (rtos msg poll())

Also See: rtos msg send(), rtos msg read()

rtos_overrun()

The RTOS is only included in the PCW, PCWH and PCWHD software packages.

Syntax: rtos_overrun([task])

Parameters: task is an optional parameter that is the identifier of a function that
is being used as an RTOS task

Returns: A 0 (FALSE) or 1 (TRUE)
Function: This function returns TRUE if the specified task took more time to
execute than it was allocated. If no task was specified, then it
returns TRUE if any task ran over it's alloted execution time.

294

Built-in Functions

Availability: All devices

RiEgEes #USE RTOS(statistics)
Examples: rtos_overrun ()

Also See: None
rtos_run()

The RTOS is only included in the PCW, PCWH, and PCWHD software packages.

Syntax: rtos_run()

Parameters: None

Returns: None

Function: This function begins the execution of all enabled RTOS tasks. This
function controls the execution of the RTOS tasks at the allocated
rate for each task. This function will return only when
rtos_terminate() is called.

Availability: All devices

Requires: #USE RTOS

Examples: rtos_run()

Also See: rtos terminate()

rtos_signal()

The RTOS is only included in the PCW, PCWH and PCWHD software packages.

Syntax:

rtos_signal (sem)

Parameters:

sem is a global variable that represents the current availability of a
shared
system resource (a semaphore).

295

CCS C Compiler

Returns: None

Function: This function can only be used by an RTOS task. This function
increments sem to let waiting tasks know that a shared resource is
available for use.

Availability: All devices

Requires: #USE RTOS

Examples: rtos_signal (uart use)

Also See: rtos wait()

rtos_stats()

The RTOS is only included in the PCW, PCWH and PCWHD software packages.

Syntax: rtos_stats(task,&stat)
Parameters: task is the identifier of a function that is being used as an RTOS
task.

stat is a structure containing the following:
struct rtos_stas_struct {
unsigned int32 task_total_ticks; //number of ticks the
task has
/lused
unsigned int16 task_min_ticks; //the minimum
number of ticks
/lused
unsigned int16 task_max_ticks; //the maximum
number of ticks
/lused
unsigned int16 hns_per_tick; /lus =
(ticks*hns_per_tick)/10

3
Returns: Undefined
Function: This function returns the statistic data for a specified task.
Availability: All devices
Requires: #USE RTOS(statistics)

296

Built-in Functions

rtos stats(echo, &stats)
Examples: -

Also See: None

rtos_terminate()

The RTOS is only included in the PCW, PCWH and PCWHD software packages.

Syntax: rtos_terminate()

Parameters: None

Returns: None

Function: This function ends the execution of all RTOS tasks. The execution

of the program will continue with the first line of code after the
rtos_run() call in the program. (This function causes rtos_run() to

return.)
Availability: All devices
Requires: #USE RTOS

rtos terminate ()
Examples: -
Also See: rtos run
rtos_wait()

The RTOS is only included in the PCW, PCWH and PCWHD software packages.

Syntax: rtos_wait (sem)
Parameters: sem is a global variable that represents the current availability of a
shared

system resource (a semaphore).

Returns: None

Function: This function can only be used by an RTOS task. This function
waits for sem to be greater than 0 (shared resource is available),
then decrements sem to claim usage of the shared resource and

297

CCS C Compiler

continues the execution of the rest of the code the RTOS task.
This function allows other tasks to execute while the task waits for
the shared resource to be available.

Availability: All devices

Requires: #USE RTOS
Examples: rtos_wait (uart_use)
Also See: rtos signal

rtos_vyield()

The RTOS is only included in the PCW, PCWH and PCWHD software packages.

Syntax: rtos_yield()

Parameters: None

Returns: None

Function: This function can only be used in an RTOS task. This function

stops the execution of the current task and returns control of the
processor to rtos_run(). When the next task executes, it will start
it's execution on

the line of code after the rtos_yield().

Availability: All devices
Requires: #USE RTOS

void yield(void)
{
printf (“Yielding...\r\n”);
Examples: rtos_yield();
printf (“Executing code after yield\r\n”);

Also See: None

298

Built-in Functions

set_adc_channel()

Syntax: set_adc_channel (chan [,neq]))

Parameters: chan is the channel number to select. Channel numbers start at O
and are labeled in the data sheet ANO, AN1. For devices with a
differential ADC it sets the positive channel to use.
neg is optional and is used for devices with a differential ADC only.
It sets the negative channel to use, channel numbers can be 0 to 6
or VSS. If no parameter is used the negative channel will be set to
VSS by default.

Returns: undefined

Function: Specifies the channel to use for the next read_adc() call. Be aware
that you must wait a short time after changing the channel before
you can get a valid read. The time varies depending on the
impedance of the input source. In general 10us is good for most
applications. You need not change the channel before every read if
the channel does not change.

Availability: This function is only available on devices with A/D hardware.

Requires: Nothing
set _adc_channel (2);

X delay us (10);

Examples' value = read adc();

Example Files: ex_admm.c

Also See:

read_adc(), setup_adc(), setup_adc_ports(), ADC Overview

set_adc_trigger()

Syntax:

set_adc_trigger (trigger)

Parameters:

trigger - ADC trigger source. Constants defined in device's
header, see the device's .h file for all options. Some typical options
include:

. ADC_TRIGGER_DISABLED
. ADC_TRIGGER_ADACT_PIN
. ADC_TRIGGER_TIMER1

299

../HelpFile/CCSC/javascript:shortcutlink.click()

CCS C Compiler

Returns:
Function:

Availability:
Requires:

Examples:
Also See:

o ADC_TRIGGER_CCP1
undefined

Sets the Auto-Conversion trigger source for the Analog-to-Digital
Converter with Computation (ADC2) Module.

All devices with an ADC2 Module
Constants defined in the device's .h file

set adc_trigger (ADC_TRIGGER TIMERIL) ;

ADC Overview, setup_adc(), setup_adc_ports(),
set_adc channel(), read adc(),

#DEVICE, adc_read(), adc_write(), adc_status()

set_analog_pins()

Syntax:

set_analog_pins(pin, pin, pin, ...)

Parameters:

Returns:

Function:

Availability:
Requires:

Examples:
Example Files:

pin - pin to set as an analog pin. Pins are defined in the device's
.hfile. The actual value is a bit address. For example, bit 3 of port
A at address 5, would have a value of 5*8+3 or 43. This is defined
as follows:

#define PIN_A3 43

undefined

To set which pins are analog and digital. Usage of function
depends on method device has for setting pins to analog or digital.
For devices with ANSELX, x being the port letter, registers the
function is used as described above. For all other devices the
function works the same as setup_adc_ports() function.

Refer to the setup_adc_ports() page for documentation on how to
use.

On all devices with an Analog to Digital Converter

Nothing

set analog pins(PIN A0,PIN Al,PIN E1,PIN BO,PIN B5);

300

Built-in Functions

setup_adc_reference(), set_adc _channel(), read adc(),

Also See: setup_adc(), setup _adc_ports(),
ADC Overview
scanf()
Syntax: scanf(cstring);
scanf(cstring, values...)
fscanf(stream, cstring, values...)
Parameters: cstring is a constant string.
values is a list of variables separated by commas.
stream is a stream identifier.
0 if a failure occurred, otherwise it returns the number of
R . conversion specifiers that were read in, plus the number of
eturns: ; h
constant strings read in.
Function: Reads in a string of characters from the standard RS-232 pins and

formats the string according to the format specifiers. The format
specifier character (%) used within the string indicates that a
conversion specification is to be done and the value is to be saved
into the corresponding argument variable. A %% will input a single
%. Formatting rules for the format specifier as follows:

If fscanf() is used, then the specified stream is used, where scanf()
defaults to STDIN (the last USE RS232).

Format:

The format takes the generic form %nt. n is an option and may be
1-99 specifying the field width, the number of characters to be
inputted. t is the type and maybe one of the following:

c Matches a sequence of characters of the number
specified by the field width (1 if no field width is
specified). The corresponding argument shall be
a pointer to the initial character of an array long
enough to accept the sequence.

s Matches a sequence of non-white space
characters. The corresponding argument shall
be a pointer to the initial character of an array

301

CCS C Compiler

Lu

Ld

Lo

x or X

Lx or LX

Li

f,gore

long enough to accept the sequence and a
terminating null character, which will be added
automatically.

Matches an unsigned decimal integer. The
corresponding argument shall be a pointer to an
unsigned integer.

Matches a long unsigned decimal integer. The
corresponding argument shall be a pointer to a
long unsigned integer.

Matches a signed decimal integer. The
corresponding argument shall be a pointer to a
signed integer.

Matches a long signed decimal integer. The
corresponding argument shall be a pointer to a
long signed integer.

Matches a signed or unsigned octal integer. The
corresponding argument shall be a pointer to a
signed or unsigned integer.

Matches a long signed or unsigned octal integer.
The corresponding argument shall be a pointer
to a long signed or unsigned integer.

Matches a hexadecimal integer. The
corresponding argument shall be a pointer to a
signed or unsigned integer.

Matches a long hexadecimal integer. The
corresponding argument shall be a pointer to a
long signed or unsigned integer.

Matches a signed or unsigned integer. The
corresponding argument shall be a pointer to a
signed or unsigned integer.

Matches a long signed or unsigned integer. The
corresponding argument shall be a pointer to a
long signed or unsigned integer.

Matches a floating point number in decimal or
exponential format. The corresponding
argument shall be a pointer to a float.

302

Built-in Functions

[Matches a non-empty sequence of characters from
a set of expected characters. The sequence of
characters included in the set are made up of all
character following the left bracket ([) up to the
matching right bracket (]). Unless the first
character after the left bracket is a ~, in which
case the set of characters contain all characters
that do not appear between the brackets. If a -
character is in the set and is not the first or
second, where the firstis a *, nor the last
character, then the set includes all characters
from the character before the - to the character
after the -.

For example, %][a-z] would include all characters
from a to z in the set and %["a-z] would exclude
all characters from a to z from the set. The
corresponding argument shall be a pointer to the
initial character of an array long enough to
accept the sequence and a terminating null
character, which will be added automatically.

n Assigns the number of characters read thus far by
the call to scanf() to the corresponding argument.
The corresponding argument shall be a pointer
to an unsigned integer.

An optional assignment-suppressing character (*)
can be used after the format specifier to indicate
that the conversion specification is to be done,
but not saved into a corresponding variable. In
this case, no corresponding argument variable
should be passed to the scanf() function.

A string composed of ordinary non-white space
characters is executed by reading the next
character of the string. If one of the inputted
characters differs from the string, the function
fails and exits. If a white-space character
precedes the ordinary non-white space
characters, then white-space characters are first
read in until a non-white space character is read.

White-space characters are skipped, except for the
conversion specifiers [, ¢ or n, unless a white-
space character precedes the [or ¢ specifiers.

Availability: All Devices

303

CCS C Compiler

Requires:

Examples:

Example Files:

Also See:

#USE RS232

char name[2-];
unsigned int8 number;
signed int32 time;

if (scanf ("%u%s%1d", &number, name, &time))
printf"\r\nName: %s, Number: %u, Time:
%$1d", name, number, time) ;

None

RS232 1/0 Overview, getc(), putc(), printf()

set_cog_blanking()

Syntax: set_cog_blanking(falling_time, rising_time);

Parameters: falling time - sets the falling edge blanking time.
rising time - sets the rising edge blanking time.

Returns: Nothing

Function: To set the falling and rising edge blanking times on the
Complementary
Output Generator (COG) module. The time is based off the source
clock of the COG
module, the times are either a 4-bit or 6-bit value, depending on the
device, refer to the
device's datasheet for the correct width.

Availability: All devices with a COG module.

Examples: set cog blanking(10,10);

Example Files:

Also See:

None

setup _cog(), set cog_phase(), set cog _dead band(),
cog_status(), cog_restart()

304

Built-in Functions

set_cog dead band()

Syntax: set_cog_dead_band(falling_time, rising_time);

Parameters: falling time - sets the falling edge dead-band time.
rising time - sets the rising edge dead-band time.

Returns: Nothing

Function: To set the falling and rising edge dead-band times on the
Complementary
Output Generator (COG) module. The time is based off the source
clock of the COG
module, the times are either a 4-bit or 6-bit value, depending on the
device, refer to the
device's datasheet for the correct width.

Availability: All devices with a COG module.

Examples: set cog dead band(16,32) ;

Example Files:

Also See:

None

setup_cog(), set_cog phase(), set _cog blanking(), cog_status(),
cog_restart

set_cog _phase()

Syntax: set_cog_phase(rising_time);
set_cog_phase(falling_time, rising_time);

Parameters: falling time - sets the falling edge phase time.
rising time - sets the rising edge phase time.

Returns: Nothing

Function: To set the falling and rising edge phase times on the

Complementary

Output Generator (COG) module. The time is based off the source
clock of the COG

module, the times are either a 4-bit or 6-bit value, depending on the

305

CCS C Compiler

Availability:
Examples:

Example Files:
Also See:

device.
Some devices only have a rising edge delay, refer to the device's
datasheet.

All devices with a COG module.
set cog phase(10,10);
None

setup_cog(), set_cog _dead band(), set _cog_blanking(),
cog_status(), cog_restart()

set_compare_time()

Syntax: set_compare_time(x, ocr, [ocrs]])

Parameters: x is 1-16 and defines which output compare module to set time for
ocr is the compare time for the primary compare register.
ocrs is the optional compare time for the secondary register. Used
for dual compare mode.

Returns: None

Function: This function sets the compare value for the output compare
module. If the output compare module is to perform only a single
compare than the ocrs register is not used. If the output compare
module is using double compare to generate an output pulse, the
ocr signifies the start of the pulse and ocrs defines the pulse
termination time.

Availability: Only available on devices with output compare modules.

Requires: Nothing
// Pin OCl will be set when timer 2 is equal to 0xF000
setup_timer2 (TMR INTERNAL | TIMER DIV BY 8);
setup compare time (1, 0xF000);

Examples: - In

Example Files:

Also See:

setup compare (1, COMPARE SET ON_MATCH |
COMPARE TIMER2) ;

None
get_capture(), setup_compare(), Output Compare, PWM
Overview

306

Built-in Functions

set_dedicated_adc_channel()

Syntax:

set_dedicated_adc_channel(core,channel, [differential]);

Parameters:

Returns:

Function:

Availability:
Requires:

Examples:

Example Files:

core - the dedicated ADC core to setup

channel - the channel assigned to the specified ADC core.
Channels are defined in the device's .h file as follows:

o ADC_CHANNEL_ANO
ADC_CHANNEL_AN7
ADC_CHANNEL_PGA1
ADC_CHANNEL_ANOALT
ADC_CHANNEL_AN1
ADC_CHANNEL_AN18
ADC_CHANNEL_PGA2
ADC_CHANNEL_AN1ALT
ADC_CHANNEL_AN2
ADC_CHANNEL_AN11
ADC_CHANNEL_VREF_BAND_GAP
ADC_CHANNEL_AN3
ADC_CHANNEL_AN15

Not all of the above defines can be used with all the dedicated ADC
cores. Refer to the device's header for which can be used with
each dedicated ADC core.

differential - optional parameter to specify if channel is differential
or single-ended. TRUE is differential and FALSE is single-ended.

Undefined

Sets the channel that will be assigned to the specified dedicated
ADC core.

Function does not set the channel that will be read with the next
call to read_adc(), use set_adc_channel() or read_adc() functions
to set the channel that will be read.

On the dsPIC33EPxxGSxxx family of devices.

Nothing.
setup_dedicated_adc_channel(0,ADC_CHANNEL_ANO);

None

307

CCS C Compiler

setup _adc(), setup _adc ports(), set_adc channel(), read adc(),
Also See: adc_done(), setup _dedicated adc(), ADC Overview

set_input_level x()

Syntax: set_input_level_a(value)
set_input_level_b(value)
set_input_level_v(value)
set_input_level_d(value)
set_input_level_e(value)
set_input_level_f(value)
set_input_level_g(value)
set_input_level_h(value)
set_input_level_j(value)
set_input_level_k(value)
set_input_level_I(value)

Parameters: value is an 8-bit int with each bit representing a bit of the I/O port.
Returns: undefined
Function: These functions allow the I/O port Input Level Control (INLVLX)

registers to be set. Each bit in the value represents one pin. A 1
sets the corresponding pin's input level to Schmitt Trigger (ST)
level, and a 0 sets the corresponding pin's input level to TTL level.

All devices with ODC registers, however not all devices have all I/O

Availability: ports and not all devices port's have a corresponding ODC register.
Requires: Nothing

set _input level a(0x0); //sets PIN A0 input level to
Examples: ST and all other

//PORTA pins to TTL level
Example Files: None

output_high(), output_low(), output_bit(), output_x(), General
Also See: Purpose 1/0

set_nco_inc_value()

Syntax: set_nco_inc_value(value);

308

Built-in Functions

Parame
ters:
Returns

Functio
n:

Availabi
lity:
Exampl
es:

Exampl
e Files:
Also
See:

value- value to set the NCO increment registers

Undefined

Sets the value that the NCO's accumulator will be incremented by
on each clock pulse. The increment registers are double buffered
so the new value won't be applied until the accumulator rolls-over.

On devices with a NCO module.

set nco inc value(inc value); //sets the new
increment value

None

setup _nco(), get nco accumulator(), get nco inc value()

set_open_drain_x(value)

Syntax:

set_open_drain_a(value)
set_open_drain_b(value)
set_open_drain_c(value)
set_open_drain_d(value)
set_open_drain_e(value)
set_open_drain_f(value)

set_open_drain_g(value)
set_open_drain_h(value)
set_open_drain_j(value)

set_open_drain_k(value)

Parameters:

Returns:

Function

Availability
Examples:

value — is an 8-bit int with each bit representing a bit of the 1/10
port.

Nothing

These functions allow the I/O port Open-Drain Control (ODCONX)
registers to be set. Each bit in the value represents one pin. A1
sets the corresponding pin to act as an open-drain output, and a 0
sets the corresponding pin to act as a digital output.

Nothing.
set _open drain a(0x01); //makes PIN A0 an open-
drain output.
set open drain b (0x001); //enables open-drain
output on PIN-BO

//disable on all other
port B pins.

309

CCS C Compiler

Also See

output_high(), output low(), output_bit(), output_x(), General

Purpose 1/0

set_power_pwm_override()

Syntax: set_power_pwm_override(pwm, override, value)
Parameters: pwm is a constant between 0 and 7
Override is true or false
Value is 0 or 1
Returns: undefined
Function: pwm selects which module will be affected.
Override determines whether the output is to be determined by the
OVDCONS register or the PDC registers. When override is false,
the PDC registers determine the output.
When override is true, the output is determined by the value
stored in OVDCONS.
value determines if pin is driven to it's active staet or if pin will be
inactive. | will be driven to its active state, 0 pin will be inactive.
Availability: All devices equipped with PWM.
Requires: None
set power pwm override(l, true, 1); //PWMl will be
//overridden to
active
Examples: //state
set _power pwm override(l, false, 0); //PMW1 will not be
//overidden
Example Files: None

Also See:

setup_power pwm(), setup_power pwm_pins(),
set_power pwmX_ duty()

set_power_pwmx_duty()

Syntax:

set_power_pwmX_duty(duty)

310

Built-in Functions

Parameters:

Returns:

Function:

Availability:
Requires:

Examples:
Example Files:

Also See:

Xis 0, 2,4, 0r6
Duty is an integer between 0 and 16383.

undefined

Stores the value of duty into the appropriate PDCXL/H register.
This duty value is the amount of time that the PWM output is in the
active state.

All devices equipped with PWM.

None

set power pwmx duty(4000);

None

setup _power pwm(), setup power pwm_pins(),
set_power pwm_override()

set_ pwml duty() set_ pwm2_duty()
set_ pwm3_duty() set_pwm4 _duty()
set_pwmb5_ duty()

Syntax: set_pwm1_duty (value)
set_pwm2_duty (value)
set_pwm3_duty (value)
set_pwm4_duty (value)
set_pwmb5_duty (value)
Parameters: value may be an 8 or 16 bit constant or variable.
Returns: undefined
Function: Writes the 10-bit value to the PWM to set the duty. An 8-bit

value may be used if the most significant bits are not
required. The 10 bit value is then used to determine the duty
cycle of the PWM signal as follows:

o[duty cycle =value /[4 * (PR2 +1)]

If an 8-bit value is used, the duty cycle of the PWM signal is
determined as follows:
o] duty cycle=value/(PR2+1)

311

CCS C Compiler

Availability:

Requires:

Examples:

Example Files:

Where PR2 is the maximum value timer 2 will count to before
toggling the output pin.

This function is only available on devices with CCP/PWM
hardware.

None

// For a 20 mhz clock, 1.2 khz frequency,

// t2DIV set to 16, PR2 set to 200

// the following sets the duty to 50% (or 416 us).

long duty;

duty = 408; // [408/(4*(200+1))]=0.5=50%
set_pwml_ duty (duty);

ex_pwm.c

setup_ccpX(), set_ccpX_compare_time(),
set_timer_period_ccpX(), set_timer_ccpX(),

Also See: get_timer_ccpX(), get_capture_ccpX(),
get_captures32_ccpX()
set_pwml offset() set_pwm2_offset()
set_pwm3_offset() set_pwm4_offset()
set_pwmb5_offset() set_pwmb6_offset()
Syntax: set_pwml_offset (value)
set_pwm?2_offset (value)
set_pwm3_offset (value)
set_pwm4_offset (value)
set_pwmb5_offset (value)
set_pwm6_offset (value)
Parameters: value - 16-bit constant or variable.
Returns: undefined.
Function: Writes the 16-bit to the PWM to set the offset. The offset is

used to adjust the waveform of a slae PWM module relative

312

../HelpFile/CCSC/javascript:shortcutlink.click()

Built-in Functions

Availability:
Requires:

Examples:

Example Files:

Also See:

to the waveform of a master PWM module.
Devices with a 16-bit PWM module.

Nothing

set _pwml offset (0x0100);
set pwml offset (offset);

setup_pwm(), set_pwm_duty(), set pwm_period(),
clear pwm_interrupt(), set_pwm phase(),

enable pwm interrupt(), disable pwm interrupt(),
pwm _interrupt active()

set_ pwml period() set_pwm2_period()
set_ pwm3_period() set_pwm4 period()
set_pwmb period() set_ pwm6 _period()

Syntax:

set_pwm1_period (value)
set_pwm2_period (value)
set_pwma3_period (value)
set_pwm4_period (value)
set_pwmb5_period (value)
set_pwm6_period (value)

Parameters:

Returns:

Function:

Availability:

Requires:

value - 16-bit constant or variable.
undefined.

Writes the 16-bit to the PWM to set the period. When the PWM
module is set-up for standard mode it sets the period of the PWM
signal. When set-up for set on match mode, it sets the maximum
value at which the phase match can occur. When in toggle on
match and center aligned modes it sets the maximum value the
PWMxTMR will count to, the actual period of PWM signal will be
twice what the period was set to.

Devices with a 16-bit PWM module.

Nothing

313

CCS C Compiler

Examples:
Example Files:

Also See:

set pwml period(0x8000);
set pwml period(period);

setup _pwm(), set pwm_duty(), set pwm_phase(),
clear pwm interrupt(), set pwm_offset(),

enable pwm interrupt(), disable pwm interrupt(),
pwm_interrupt_active()

set_ pwml phase() set_ pwm2_phase()
set_ pwm3_phase() set_ pwm4 phase()
set_ pwmb5 phase() set pwm6_phase()

Syntax:

set_pwm1_phase (value)
set_pwm2_phase (value)
set_pwm3_phase (value)
set_pwm4_phase (value)
set_pwmb5_phase (value)
set_pwm6_phase (value)

Parameters:

Returns:

Function:

Availability:
Requires:

Examples:
Example Files:

Also See:

value - 16-bit constant or variable.
undefined.

Writes the 16-bit to the PWM to set the phase. When the PWM
module is set-up for standard mode the phaes specifies the start
of the duty cycle, when in set on match mode it specifies when
the output goes high, and when in toggle on match mode it
specifies when the output toggles. Phase is not used when in
center aligned mode.

Devices with a 16-bit PWM module.

Nothing

set pwml phase(0);
set pwml phase (phase);

setup _pwm(), set_pwm_duty(), set_pwm_period(),
clear pwm _interrupt(),

set_pwm_offset(), enable_pwm_interrupt(),
disable pwm interrupt(), pwm_interrupt active()

314

Built-in Functions

set_open_drain_x()

Syntax:

set_open_drain_a(value)
set_open_drain_b(value)
set_open_drain_v(value)
set_open_drain_d(value)
set_open_drain_e(value)
set_open_drain_f(value)

set_open_drain_g(value)
set_open_drain_h(value)
set_open_drain_j(value)

set_open_drain_k(value)

Parameters:

Returns:

Function:

Availability:

Requires:

Examples:

Example Files:

value is an 16-bit int with each bit representing a bit of the 1/0
port.

undefined

These functions allow the I/O port Open-Drain Control (ODC)
registers to be set. Each bit in the value represents one pin. A 1
sets the corresponding pin to act as an open-drain output, and a 0
sets the corresponding pin to act as a digital output.

All devices with ODC registers, however not all devices have all
I/O ports and not all devices port's have a corresponding ODC
register.

Nothing

set _open drain_a(0x0001); //makes PIN AQ an open-
drain output

None

output_high(), output_low(), output_bit(), output_x(), General

Also See: Purpose 1/0
set_rtcc() set_timer0() set_timerl()
set_timer2() set timer3() set_timer4()

set_timer5()

Syntax:

set_timerO(value) or set_rtcc (value)

315

CCS C Compiler

set_timerl(value)
set_timer2(value)
set_timer3(value)
set_timer4(value)
set_timer5(value)

Parameters:

Returns:

Function:

Availability:

Requires:

Examples:

Example Files:

Timers 1 & 5 get a 16 bit int.

Timer 2 and 4 gets an 8 bit int.

Timer 0 (AKA RTCC) gets an 8 bit int except on the PIC18XXX
where it needs a 16 bit int.

Timer 3 is 8 bit on PIC16 and 16 bit on PIC18

undefined

Sets the count value of a real time clock/counter. RTCC and
Timer0 are the same. All timers count up. When a timer reaches
the maximum value it will flip over to 0 and continue counting
(254, 255, 0, 1, 2...)

Timer O - All devices

Timers 1 & 2 - Most but not all PCM devices
Timer 3 - Only PIC18XXX and some pick devices
Timer 4 - Some PCH devices

Timer 5 - Only PIC18XX31

Nothing

// 20 mhz clock, no prescaler, set timer 0
// to overflow in 35us

set timer0 (81); // 256-(.000035/(4/20000000))

ex_patg.c

set_timerl(), get _timerX() TimerQ Overview, TimerlOverview,

Also See: Timer2 Overview, Timer5 Overview

set_ticks()

Syntax: set_ticks([stream],value);

Parameters: stream — optional parameter specifying the stream defined in

#USE TIMER

316

../HelpFile/CCSC/javascript:shortcutlink.click()

Built-in Functions

Returns:

Function:

Availability:
Requires:

Examples:

Example Files:

Also See:

value — a 8, 16 or 32 bit integer, specifying the new value of the
tick timer. (int8, int16 or int32)

void

Sets the new value of the tick timer. Size passed depends on the
size of the tick timer.

All devices.

#USE TIMER(options)
#USE TIMER (TIMER=1,TICK=1ms,BITS=16,NOISR)

void main (void) {
unsigned intl6 value = 0x1000;

set ticks(value);

}

None

#USE TIMER, get_ticks()

setup_sd_adc_calibration()

Syntax: setup_sd_adc_calibration(model);

Parameters: mode- selects whether to enable or disable calibration mode for the SD ADC
module. The following defines are made in the device's .h file:
1 SDADC_START_CALIBRATION_MODE
2 SDADC_END_CALIBRATION_MODE

Returns: Nothing

Function: To enable or disable calibration mode on the Sigma-Delta Analog
to Digital Converter (SD ADC) module. This can be used to
determine the offset error of the module, which then can be
subtracted from future readings.

Availability: Only devices with a SD ADC module.

317

CCS C Compiler

Examples: signed int 32 result, calibration;
set_sd_adc_calibration(SDADC_START_CALIBRATION_MODE);
calibration = read_sd_adc();
set_sd_adc_calibration(SDADC_END_CALIBRATION_MODE);

result = read_sd_adc() - calibration;

Example None
Files:
Also See: setup sd adc(), read sd adc(), set sd adc channel()

set_sd_adc_channel()

Syntax: setup_sd_adc(channel);

Parameters: channel- sets the SD ADC channel to read. Channel can be 0 to
read the difference between CHO+ and CHO-, 1 to read the difference
between CH1+ and CH1-, or one of the following:

1 SDADC_CHI1SE_SVSS
2 SDADC_REFERENCE

Returns: Nothing

Function: To select the channel that the Sigma-Delta Analog to Digital
Converter (SD ADC) performs the conversion on.

Availability: Only devices with a SD ADC module.

Examples: set_sd_adc_channel(0);

Example Files: None

Also See: setup_sd_adc(), read_sd_adc(), set_sd adc_calibration()

set_timerA()

Syntax: set_timerA(value);

Parameters: An 8 bit integer. Specifying the new value of the timer. (int8)

Returns: undefined

318

Built-in Functions

Function:

Availability:

Requires:

Examples:

Example Files:

Also See:

Sets the current value of the timer. All timers count up. When a
timer reaches the maximum value it will flip over to 0 and continue
counting (254, 255, 0, 1, 2, ...).

This function is only available on devices with Timer A hardware.

Nothing

// 20 mhz clock, no prescaler, set timer A
// to overflow in 35us

set timerA(81); // 256-(.000035/(4/20000000))
none

get_timerA(), setup_timer_A(), TimerA Overview

set_timerB()

Syntax: set_timerB(value);
Parameters: An 8 bit integer. Specifying the new value of the timer. (int8)
Returns: undefined
Function: Sets the current value of the timer. All timers count up. When a
timer reaches the maximum value it will flip over to 0 and continue
counting (254, 255, 0, 1, 2, ...).
Availability: This function is only available on devices with Timer B hardware.
Requires: Nothing
// 20 mhz clock, no prescaler, set timer B
// to overflow in 35us
Examples:

Example Files:

Also See:

set _timerB(81); // 256-(.000035/(4/20000000))
none

get_timerB(), setup_timer_B(), TimerB Overview

319

CCS C Compiler

set_tris_x()
Syntax: set_tris_a (value)
set_tris_b (value)
set_tris_c (value)
set_tris_d (value)
set_tris_e (value)
set_tris_f (value)
set_tris_g (value)
set_tris_h (value)
set_tris_j (value)
set_tris_k (value)
Parameters: value is an 8 bit int with each bit representing a bit of the 1/O port.
Returns: undefined
Function: These functions allow the I/O port direction (TRI-State) registers to
be set. This must be used with FAST_IO and when I/O ports are
accessed as memory such as when a # BYTE directive is used to
access an I/O port. Using the default standard I/O the built in
functions set the 1/O direction automatically.
Each bit in the value represents one pin. A 1 indicates the pin is
input and a 0 indicates it is output.
Availability: All devices (however not all devices have all I/O ports)
Requires: Nothing
SET_TRIS_B(0x0F);
// B7,B6,B5,B4 are outputs
Examples:

Example Files:

Also See:

// B3,B2,B1,B0 are inputs
lcd.c

#USE FAST 10, #USE FIXED 10, #USE STANDARD 10, General
Purpose 1/0

set_uart_speed()

Syntax:

set_uart_speed (baud, [stream, clock])

320

../HelpFile/CCSC/javascript:shortcutlink.click()

Built-in Functions

Parameters:

Returns:
Function:

Availability:
Requires:

Examples:

Example Files:

Also See:

baud is a constant representing the number of bits per second.
stream is an optional stream identifier.

clock is an optional parameter to indicate what the current clock is if
it is different from the #use delay value

undefined

Changes the baud rate of the built-in hardware RS232 serial port at
run-time.

This function is only available on devices with a built in UART.

#USE RS232

// Set baud rate based on setting
// of pins BO and Bl

switch(input b() & 3) {
case 0 : set uart speed(2400); break;
case 1 : set uart speed(4800); break;
case 2 : set uart speed(9600); break;
case 3 : set uart speed(19200); break;
}

loader.c

#USE RS232, putc(), getc(), setup uart(), RS232 I/O Overview,

setimp()

Syntax: result = setjmp (env)
Parameters: env: The data object that will receive the current environment
If the return is from a direct invocation, this function returns O.
If the return is from a call to the longjmp function, the setjmp function
Returns: returns a nonzero value and it's the same value passed to the
longjmp function.
Function: Stores information on the current calling context in a data object of

type jmp_buf and which marks where you want control to pass on a
corresponding longjmp call.

321

../HelpFile/CCSC/javascript:shortcutlink.click()

CCS C Compiler

Availability:
Requires:

Examples:
Example Files:

Also See:

All devices
#INCLUDE <setjmp.h>
result = setjmp (jmpbuf) ;

None

longjmp()

setup_adc(mode)

Syntax:

setup_adc (mode, [ADCRS], [ADRPT]);
setup_adc2(mode);

Parameters:

Returns:

Function:

Availability:

Requires:

Examples:

mode- Analog to digital mode. The valid options vary depending on
the device. See the devices .h file for all options. Some typical
options include:

¢ ADC_OFF

¢ ADC_CLOCK_INTERNAL

¢ ADC_CLOCK_DIV_32
ADCRS - For devices with an analog-to-digital converter with
computation (ADC2) module only. Optional parameter used set how
much the accumulated value is divided by (2*ADCRS) in
Accumulate, Average and Parst Average modes, and the cut-off
frequency in low-pass filter mode.

ADRPT - For devices with an ADC2 module only. Optional parameter
used to set the number of samples to be done before performing a
threshold comparison in Average, Bust Average and low-pass filter
modes.

undefined
Configures the analog to digital converter.
Only the devices with built in analog to digital converter.

Constants are defined in the devices .h file.

setup adc ports(ALL ANALOG);
setup_adc (ADC_CLOCK_INTERNAL) ;
set_adc_channel(0);

value = read adc();

setup adc(ADC OFF);

322

Built-in Functions

Example Files:

Also See:

ex_admm.c

setup_adc_ports(), set_adc _channel(), read_adc(), #DEVICE, ADC
Overview,
see header file for device selected

setup_adc_ports()

Syntax: setup_adc_ports (value)
setup_adc_ports (ports, reference])
Parameters: value - a constant defined in the device's .h file
ports - is a constant specifying the ADC pins to use
reference - is an optional constant specifying the ADC reference to
use. By default, the reference voltage are Vss and Vdd
Returns: undefined
Function: Sets up the ADC pins to be analog, digital, or a combination and the
voltage reference to use when computing the ADC value. The
allowed analog pin combinations vary depending on the chip and are
defined by using the bitwise OR to concatenate selected pins
together. Check the device include file for a complete list of available
pins and reference voltage settings. The constants ALL_ANALOG
and NO_ANALOGS are valid for all chips.
Some other example pin definitions are:
. SANL1 | sAN2 - AN1 and AN2 are analog, remaining
pins are digital
. SANO | sAN3 - ANO and AN3 are analog, remaining
pins are digital
This function is only available on devices with A/D hardware.
Availability: This function is only available on devices with built-in A/D converters.
Requires: Constants are defined in the device's .h file.
// All pins analog (that can be)
setup adc_ports (ALL_ANALOG) ;
Examples:

// Pins AO, Al, and A3 are analog and all others are
digital.
// The +5V is used as a reference.

323

../HelpFile/CCSC/javascript:shortcutlink.click()

CCS C Compiler

Example Files:

Also See:

setup adc_ports(RAO_RA1 RA3 ANALOG) ;

// Pins A0 and Al are analog. Pin RA3 is use for the
reference voltage

// and all other pins are digital.

setup adc ports (A0 _RA1 ANALOGRA3 REF);

// Set all ADC pins to analog mode.

setup adc_ports (ALL_ANALOG) ;

// Pins ANO, AN1l, and AN3 are analog and all other pins
are digital.

setup adc ports (sANO|sAN1|sAN3);
// Pins ANO and ANl are analog. The VreflL pin and vdd
are used for

// voltage references.

setup adc_ports (sANO|sAN1l, VREF VDD);

ex_admm.c

#USE RS232, putc(), getc(), setup uart(), RS232 1/0 Overview,

setup_adc_reference()

Syntax: setup_adc_reference(reference)

Parameters: reference - the voltage reference to set the ADC. The valid options
depend on the device, see the device's .h file for all options. Typical
options include:

VSS_VDD
VSS_VREF
VREF_VREF
VREF_VDD

Returns: undefined

Function: To set the positive and negative voltage reference for the Analog to
Digital Converter (ADC) uses.

Availability: Only on devices with an ADC and has ANSELX, x being the port

vailability: . X . . L
letter, registers for setting which pins are analog or digital.

Requires: Nothing

324

../HelpFile/CCSC/javascript:shortcutlink.click()

Built-in Functions

Examples:
Example Files:

set_adc_reference (VSS_VREF) ;

set_analog pins(), set_adc channel(), read adc(), setup adc(),
setup adc ports(),

Also See: ADC Overview
setup_at()
Syntax: setup_at(settings);
Parameters: settings - the setup of the AT module. See the device's header file
for all options. Some typical options include:
AT_ENABLED
AT_DISABLED
AT_MULTI_PULSE_MODE
AT_SINGLE_PULSE_MODE
Returns: Nothing
Function: To setup the Angular Timer (AT) module.
Availability: All devices with an AT module.
Requires: Constants defined in the device's .h file
setup at (AT _ENABLED|AT_MULTI_ PULSE_MODE|AT_ INPUT_ ATIN) ;
Examples:

Example Files:

Also See:

None

at_set_resolution(), at_get_resolution(),
at_set_missing_pulse_delay(), at_get _missing_pulse_delay(),
at_get period(), at_get_phase_counter(), at_set_set_point(),
at_get set point(), at_get_set_point_error(), at_enable_interrupts(),
at_disable interrupts(), at_clear_interrupts(), at_interrupt_active(),
at_setup _cc(), at_set_compare_time(), at_get capture(),

at_get status()

325

CCS C Compiler

setup_ccpl() setup_ccp2()
setup_ccp3() setup_ccp4()
setup_ccp5() setup_ccp6()

Syntax: setup_ccpl (mode) or setup_ccpl (mode, pwm)
setup_ccp2 (mode) or setup_ccp2 (mode, pwm)
setup_ccp3 (mode) or setup_ccp3 (mode, pwm)
setup_ccp5 (mode) or setup_ccp5 (mode, pwm)
setup_ccp6 (mode) or setup_ccp6 (mode, pwm)

Parameters: mode is a constant. Valid constants are defined in the devices .h file
and refer to devices .h file for all options, some options are as follows:

Disable the CCP:

CCP_OFF
Set CCP to capture mode:
CCP_CAPTURE_FE Capture on falling edge
CCP_CAPTURE_RE Capture on rising edge

CCP_CAPTURE_DIV_4 Capture after 4 pulses
CCP_CAPTURE_DIV_16 Capture after 16 pulses

Set CCP to compare mode:

CCP_COMPARE_SET_ON Output high on compare

_MATCH

CCP_COMPARE_CLR_ON Output low on compare
_MATCH

CCP_COMPARE_INT interrupt on compare
CCP_COMPARE_RESET_ Reset timer on compare
TIMER

Set CCP to PWM mode:

CCP_PWM Enable Pulse Width Modulator

Constants used for ECCP modules are as follows:

CCP_ PWM H H

CCP_PWM_H_L
CCP_PWM_L_H
CCP_PWM_L_L

CCP_PWM_FULL_BRIDGE
CCP_PWM_FULL_BRIDGE_REV
CCP_PWM_HALF_BRIDGE

326

Built-in Functions

Returns:

Function:

Availability:

CCP_SHUTDOWN_ON_COMP1 shutdown on Comparator

1 change
CCP_SHUTDOWN_ON_COMP2 shutdown on Comparator

2 change
CCP_SHUTDOWN_ON_COMP Either Comp. 1 or 2

change
CCP_SHUTDOWN_ON_INTO VIL on INT pin

CCP_SHUTDOWN_ON_COMP1_INTO VIL on INT pin or
Comparator 1 change

CCP_SHUTDOWN_ON_COMP2_INTO VIL on INT pin or
Comparator 2 change

CCP_SHUTDOWN_ON_COMP_INTO VIL on INT pin or
Comparator 1 or 2
change

CCP_SHUTDOWN_AC_L
CCP_SHUTDOWN_AC_H
CCP_SHUTDOWN_AC_F

Drive pins A and C high
Drive pins A and C low
Drive pins A and C tri-
state

CCP_SHUTDOWN_BD_L
CCP_SHUTDOWN_BD_H
CCP_SHUTDOWN_BD_F

Drive pins B and D high
Drive pins B and D low
Drive pins B and D tri-

state
CCP_SHUTDOWN_RESTART the device restart after a
shutdown event

CCP_DELAY use the dead-band delay

pwm parameter is an optional parameter for chips that includes ECCP
module. This parameter allows setting the shutdown time. The value
may be 0-255.

Undefined

Initialize the CCP. The CCP counters may be accessed using the long
variables CCP_1 and CCP_2. The CCP operates in 3 modes. In
capture mode it will copy the timer 1 count value to CCP_x when the
input pin event occurs. In compare mode it will trigger an action when
timer 1 and CCP_x are equal. In PWM mode it will generate a square
wave. The PCW wizard will help to set the correct mode and timer
settings for a particular application.

This function is only available on devices with CCP hardware.

327

CCS C Compiler

Requires:

Examples:

Example Files:

Also See:

Constants are defined in the devices .h file.

setup ccpl (CCP_CAPTURE RE);

ex_pwm.c, ex_ccpmp.c, ex_ccpls.c

set_pwmX_duty(), set_ccpX_compare_time(),
set_timer_period_ccpX(), set_timer_ccpX(), get_timer_ccpX(),
get_capture_ccpX(), get_captures32_ccpX()

setup_clcl()
setup_clc3()

setup_clc2()
setup_clc4()

Syntax:

setup_clcl(mode);
setup_clc2(mode);
setup_clc3(mode);
setup_clc4(mode);

Parameters:

Returns:

Function:

Availability:

Return
S:

Examples:
Example Files:

Also See:

mode — The mode to setup the Configurable Logic Cell (CLC)
module into. See the device's .h file for all options. Some typical
options include:

CLC_ENABLED

CLC_OUTPUT

CLC_MODE_AND OR

CLC_MODE_OR_XOR

Undefined.

Sets up the CLC module to performed the specified logic. Please
refer to the device datasheet to determine what each input to the
CLC module does for the select logic function

On devices with a CLC module.

Undefined.

setup_clcl (CLC_ENABLED | CLC_MODE AND OR);
None

clex _setup _gate(), clex _setup _input()

328

../HelpFile/CCSC/javascript:shortcutlink.click()
../HelpFile/CCSC/javascript:shortcutlink2.click()
../HelpFile/CCSC/javascript:shortcutlink3.click()

Built-in Functions

setup_comparator()

Syntax:

setup_comparator (mode)

Parameters:

Returns:
Function:

Availability:
Requires

Examples:

Example Files:

Also See:

mode is a constant. Valid constants are in the devices .h file refer to
devices .h file for valid options. Some typical options are as follows:

AO_A3_Al A2

AO0_A2_Al A2

NC_NC Al A2

NC_NC_NC_NC
AO0_VR Al VR

A3 VR A2 VR
AO0_A2_Al_A2_OUT ON_A3 A4
A3_A2_Al_A2

undefined

Sets the analog comparator module. The above constants have four
parts representing the inputs: C1-, C1+, C2-, C2+

This function is only available on devices with an analog comparator.
Constants are defined in the devices .h file.

// Sets up two independent comparators (Cl and C2),
// Cl uses A0 and A3 as inputs (- and +), and C2

// uses Al and A2 as inputs

setup comparator (A0 A3 Al A2);

ex_comp.c

Analog Comparator overview

setup_counters()

Syntax:

setup_counters (rtcc_state, ps_state)

Parameters:

rtcc_state may be one of the constants defined in the devices .h
file. For example: RTCC_INTERNAL, RTCC_EXT L TO _Hor
RTCC EXT H TO L

329

../HelpFile/CCSC/javascript:shortcutlink.click()

CCS C Compiler

ps_state may be one of the constants defined in the devices .h file.

For example: RTCC_DIV_2, RTCC_DIV_4, RTCC_DIV_8,
RTCC_DIV_16, RTCC_DIV_32, RTCC_DIV_64, RTCC_DIV_128,
RTCC_DIV_256, WDT_18MS, WDT_36MS, WDT_72MS,
WDT_144MS, WDT_288MS, WDT_576MS, WDT_1152MS,

WDT_2304MS

Returns: undefined

Function: Sets up the RTCC or WDT. The rtcc_state determines what drives the
RTCC. The PS state sets a prescaler for either the RTCC or WDT.
The prescaler will lengthen the cycle of the indicated counter. If the
RTCC prescaler is set the WDT will be set to WDT_18MS. If the WDT
prescaler is set the RTCC is setto RTCC_DIV_1.
This function is provided for compatibility with older
versions. setup_timer_0 and setup_WDT are the recommended
replacements when possible. For PCB devices if an external RTCC
clock is used and a WDT prescaler is used then this function must be
used.

Availability: All devices

Requires: Constants are defined in the devices .h file.
setup counters (RTCC INTERNAL, WDT 2304MS) ;

Examples: - - -

Example Files: None

Also See: setup wdt(), setup_timer O(), see header file for device selected

setup_cog()

Syntax: setup_cog(mode, [shutdown]);
setup_cog(mode, [shutdown], [sterring]);

Parameters: mode- the setup of the COG module. See the device's .h file for all
options.
Some typical options include:

. COG_ENABLED
. COG_DISABLED
. COG_CLOCK_HFINTOSC

330

Built-in Functions

Returns:

Function:

Availability:

Examples:

Example Files:

Also See:

. COG_CLOCK_FOSC

shutdown- the setup for the auto-shutdown feature of COG module.
See the device's .h file for all the options. Some typical options
include:

. COG_AUTO_RESTART
. COG_SHUTDOWN_ON_C10UT
. COG_SHUTDOWN_ON_C20UT

steering- optional parameter for steering the PWM signal to COG
output pins and/or selecting

the COG pins static level. Used when COG is set for steered PWM
or synchronous steered

PWM modes. Not available on all devices, see the device's .h file if
available and for all options.

Some typical options include:

. COG_PULSE_STEERING_A
. COG_PULSE_STEERING_B
. COG_PULSE_STEERING_C
. COG_PULSE_STEERING_D

undefined

Sets up the Complementary Output Generator (COG) module, the
auto-shutdown feature of

the module and if available steers the signal to the different output
pins.

All devices with a COG module.
setup_cog (COG_ENABLED | COG PWM | COG_FALLING SOURCE_ PWM3
|

COG RISING SOURCE PWM3, COG NO AUTO SHUTDOWN,
COG_PULSE STEERING A | COG PULSE STEERING B);

None

set cog dead band(), set cog phase(), set _cog blanking(),
cog_status(), cog_restart()

331

CCS C Compiler

setup_crc()

Syntax: setup_crc(polynomial terms)

Parameters: polynomial- This will setup the actual polynomial in the CRC engine.
The power of each
term is passed separated by a comma. 0 is allowed, but ignored. The
following define
is added to the device's header file to enable little-endian shift
direction:
CRC_LITTLE_ENDIAN

Returns: Nothing

Function: Configures the CRC engine register with the polynomial.

Availability: Only devices with a built-in CRC module.

Examples: setup crc(l2, 5); // CRC Polynomial is
xx+1
setup crc(l6, 15, 3, 1); // CRC Polynomial is
x4l

Example Files: None

Also See: crc_init(), crc_calc(), crc_calc8()

setup_cwg()

Syntax: setup_cwg(mode,shutdown,dead_time_rising,dead_time_falling)
Parameters: mode- the setup of the CWG module. See the device's .h file for all
options.

Some typical options include:

CWG_ENABLED
CWG_DISABLED

CWG_OUTPUT_B
CWG_OUTPUT_A

shutdown- the setup for the auto-shutdown feature of CWG module.
See the device's .h file for all the options. Some typical options

332

Built-in Functions

include:

CWG_AUTO_RESTART
CWG_SHUTDOWN_ON)COMP1
CWG_SHUTDOWN_ON_FLT
CWG_SHUTDOWN_ON_CLC2

dead_time_rising- value specifying the dead time between A and B
on the
rising edge. (0-63)

dead_time_rising- value specifying the dead time between A and B
on the
falling edge. (0-63)

Returns: undefined

Function: Sets up the CWG module, the auto-shutdown feature of module and
the rising
and falling dead times of the module.

Availability: All devices with a CWG module.

Examples: setup cwg (CWG_ENABLED|CWG_OUTPUT A|CWG OUTPUT B|
CWG_INPUT PWM1,CWG SHUTDOWN ON FLT, 60, 30);

Example Files: None

Also See: cwg_status(), cwg_restart()

setup_dac()

Syntax: setup_dac(mode);

Parameters: mode- The valid options vary depending on the device. See the

devices .h file for all options. Some typical options include:

- DAC_OUTPUT
Returns: undefined
Function: Configures the DAC including reference voltage.

333

CCS C Compiler

Availability:

Requires:
Examples:

Example Files:

Also See:

Only the devices with built in digital to analog converter.
Constants are defined in the devices .h file.

setup dac (DAC VDD | DAC OUTPUT);
dac_write(value);

None

dac_write(), DAC Overview, See header file for device selected

setup_external_memory()

Syntax: SETUP_EXTERNAL_MEMORY(mode);

Parameters: mode is one or more constants from the device header file OR'ed
together.

Returns: undefined

Function: Sets the mode of the external memory bus.

Availability: Only devices that allow external memory.

Requires: Constants are defined in the device.h file
setup_external memory (EXTMEM WORD WRITE

. |EXTMEM WAIT 0);
Examples: — =

Example Files:

Also See:

setup external memory (EXTMEM DISABLE) ;

None

WRITE PROGRAM EEPROM() , WRITE PROGRAM MEMORY(),
External Memory Overview

setup_lcd()

Syntax:

setup_lcd (mode, prescale, [segments0_31],[segments32_47]);

Parameters:

Mode may be any of the following constants to enable the LCD and

334

Built-in Functions

Returns:
Function:

Availability:
Requires

Examples:

Example Files:

Also See:

may be or'ed with other constants in the devices *.h file:
o LCD_DISABLED, LCD_STATIC, LCD_MUX12,
LCD_MUX13, LCD_MUX14

See the devices .h file for other device specific options.

Prescale may be 1-16 for the LCD clock.

Segments0-31 may be any of the following constants or'ed together
when using the PIC16C92X series of chips::
. SEGO0_4, SEG5_8, SEG9_11, SEG12_15,
SEG16_19, SEG20_26, SEG27_28, SEG29_31
ALL_LCD_PINS

When using the PIC16F/LF1xxx or PIC18F/LFxxxx series of chips,
each of the segments are enabled individually. A value of 1 will enable
the segment, 0 will disable it and use the pin for normal I/O operation.

Segments 32-47 when using a chip with more than 32 segments, this
enables segments 32-47. A value 1 will enable the segment, 0 will
disable it. Bit O corresponds to segment 32 and bit 15 corresponds to
segment 47.

undefined.

This function is used to initialize the LCD Driver Module on the
PIC16C92X and PIC16F/LF193X series of chips.

Only on devices with built-in LCD Driver Module hardware.
Constants are defined in the devices *.h file.

- setup led(LCD MUX14 | LCD_STOP ON SLEEP, 2,
ALL_LCD_PINS);

// PIC16C92X
. Setup_lcd(LCD_MUX13 | LCD_REF_ENABLED |
LCD B _HIGH POWER, 0, OxFF0429);

// PIC16F/LF193X - Enables Segments 0, 3, 5,
10, 16, 17, 18, 19, 20, 21, 22, 23

ex_92lcd.c

lcd_symbol(), lcd _load(), lcd_contrast(), Internal LCD Overview

335

../HelpFile/CCSC/javascript:shortcutlink.click()

CCS C Compiler

setup_low_volt_detect()

Syntax:

setup_low_volt_detect(mode)

Parameters:

Returns:

Function:

Availability:

Requires

Examples:

mode may be one of the constants defined in the devices .h file.
LVD_LVDIN, LVD_45, LVD_42, LVD_40, LVD_38, LVD_36, LVD_35,
LVD_33, LVD_30, LVD_28, LVD_27, LVD_25, LVD_23, LVD_21,
LVD_19

One of the following may be or'ed(via |) with the above if high voltage
detect is also available in the device

LVD_TRIGGER_BELOW, LVD_TRIGGER_ABOVE

undefined

This function controls the high/low voltage detect module in the device.
The mode constants specifies the voltage trip point and a direction of
change from that point (available only if high voltage detect module is
included in the device). If the device experiences a change past the
trip point in the specified direction the interrupt flag is set and if the
interrupt is enabled the execution branches to the interrupt service
routine.

This function is only available with devices that have the high/low
voltage detect module.

Constants are defined in the devices.h file.

setup_low volt detect(LVD TRIGGER BELOW | LVD 36);

This would trigger the interrupt when the voltage is below 3.6 volts

setup_nco()

Syntax:

setup_nco(settings,inc_value)

Parameters:

settings- setup of the NCO module. See the device's .h file for all
options.
Some typical options include:

NCO_ENABLE
NCO_OUTPUT
NCO_PULSE_FREQ MODE
NCO_FIXED_DUTY_MODE

336

Built-in Functions

inc_value- value to increment the NCO 20 bit accumulator by.

Returns: Undefined

Function: Sets up the NCO module and sets the value to increment the 20-bit
accumulator by.

Availability: On devices with a NCO module.

Examples: setup nco (NCO_ENABLED|NCO_OUTPUT|NCO_FIXED DUTY MODE |

NCO CLOCK FOSC,8192) ;

Example Files: None

Also See: get _nco_accumulator(), set_nco_inc_value(), get nco _inc_value()

setup_opampl() setup_opamp?2()
setup_opamp3()

Syntax: setup_opampl(mode)
setup_opamp2(mode)
setup_opamp3(mode)

Parameters: mode - The mode of the operation amplifier. See the devices .h file
for all options. Some typical options include:
° OPAMP_ENABLED
° OPAMP_DISABLED
Returns: undefined
Function: Enables or Disables the internal operational amplifier peripheral of

certain PICmicros.

Only parts with a built-in operational amplifier (for example,

Availability: PIC16F785).
Requires: Only parts with a built-in operational amplifier (for example,
PIC16F785).

setup_opampl (OPAMP_ENABLED) ;
setup_opamp2 (OPAMP_DISABLED) ;

Examples: setup_opamp3 (OPAMP_ENABLED | OPAMP I _TO OUTPUT);
Example Files: None
Also See: None

337

CCS C Compiler

setup_pid()

Syntax:

setup_pid([mode,[K1],[K2],[K3]);

Parameters:

Returns:

Function:

Availability:

Requires:

Examples:

Example Files:

mode- the setup of the PID module. The options for setting up the

module are defined in the device's header file as:

. PID_MODE_PID
PID_MODE_SIGNED_ADD_MULTIPLY_WITH_ACCUMULATION
PID_MODE_SIGNED_ADD_MULTIPLY
PID_MODE_UNSIGNED_ADD_MULTIPLY_WITH_ACCUMULATION
PID_MODE_UNSIGNED_ADD_MULTIPLY
PID_OUTPUT_LEFT_JUSTIFIED
PID_OUTPUT_RIGHT_JUSTIFIED

K1 - optional parameter specifying the K1 coefficient, defaults to zero if
not specified. The K1 coefficient is used in the PID and
ADD_MULTIPLY modes. When in PID mode the K1 coefficient can be
calculated with the following formula:

K1=Kp + Ki*T + Kd/T
When in one of the ADD_MULTIPLY modes K1 is the multiple value.

K2 - optional parameter specifying the K2 coefficient, defaults to zero if
not specified. The K2 coefficient is used in the PID mode only and is
calculated with the following formula:

K2 = -(Kp + 2Kd/T)

K3 - optional parameter specifying the K3 coefficient, defaults to zero if
not specified. The K3 coefficient is used in the PID mode, only and is
calculated with the following formula:

K3 = Kd/T
T is the sampling period in the above formulas.
Nothing

To setup the Proportional Integral Derivative (PID) module, and to set
the input coefficients (K1, K2 and K3).

All devices with a PID module.

Constants are defined in the device's .h file.

setup pid(PID MODE PID, 10, -3, 50);

None

338

Built-in Functions

Also See:

pid_get result(), pid_read(), pid_write(), pid_busy()

setup_pmp(option,address_mask)

Syntax:

setup_pmp(options,address_mask);

Parameters:

Returns:
Function:

Availability:

Requires:

Examples:

options- The mode of the Parallel Master Port that allows to set the
Master Port mode, read-write strobe options and other functionality of
the PMPort module. See the device's .h file for all options. Some typical
options include:

PAR_PSP_AUTO_INC
PAR_CONTINUE_IN_IDLE
PAR_INTR_ON_RW /lInterrupt on read write
PAR_INC_ADDR /lincrement address by 1
every
lIread/write cycle
PAR_MASTER_MODE_1 /IMaster Mode 1
PAR_WAITE4 //4 Tcy Wait for data hold
after
/I strobe

address_mask- this allows the user to setup the address enable
register with a 16-bit value. This value determines which address lines
are active from the available 16 address lines PMAO:PMA15.

Undefined.

Configures various options in the PMP module. The options are present
in the device's .h file and they are used to setup the module. The PMP
module is highly configurable and this function allows users to setup
configurations like the Slave module, Interrupt options, address
increment/decrement options, Address enable bits, and various strobe
and delay options.

Only the devices with a built-in Parallel Master Port module.
Constants are defined in the device's .h file.

setup_psp (PAR_ENABLE | //Sets up Master mode with
address

PAR MASTER MODE 1|PAR //lines PMAO:PMA7
STOP IN IDLE, 0x00FF);

339

CCS C Compiler

Example Files: None

setup_pmp(), pmp_address(), pmp_read(), psp_read(), psp_write(),

pmp_write(), psp_output_full(), psp_input_full(), psp_overflow(),
Also See: pmp_output_full('), pmp_input_full(), pmp_overflow()

See header file for device selected

setup_psmc()

Syntax: setup_psmc(unit, mode, period, period_time, rising_edge,
rise_time, falling_edge, fall_time);

Parameters: unit is the PSMC unit number 1-4

mode is one of:

° PSMC_SINGLE
PSMC_PUSH_PULL
PSMC_BRIDGE_PUSH_PULL
PSMC_PULSE_SKIPPING
PSMC_ECCP_BRIDGE_REVERSE
PSMC_ECCP_BRIDGE_FORWARD
PSMC_VARIABLE_FREQ
PSMC_3_PHASE

For complementary outputs use a or bar (]) and
PSMC_COMPLEMENTARY

Normally the module is not started until the psmc_pins() call is made.
To enable immediately or in PSMC_ENABLE_NOW.

period has three parts or'ed together. The clock source, the clock
divisor and the events that can cause the period to start.

Sources:

° PSMC_SOURCE_FOSC
PSMC_SOURCE_64MHZ
PSMC_SOURCE_CLK_PIN

Divisors:
. PSMC _DIV_1
° PSMC DIV_2

340

Built-in Functions

Returns:

Function:

Availability:

Requires:

Examples:

. PSMC_DIV_4
. PSMC_DIV_8
Events:
° Use any of the events listed below.

period_time is the duration the period lasts in ticks. A tick is the above
clock source divided by the divisor.

rising_edge is any of the following events to trigger when the signal
goes active.

rise_time is the time in ticks that the signal goes active (after the start
of the period) if the event is PSMC_EVENT_TIME, otherwise unused.

falling_edge is any of the following events to trigger when the signal
goes inactive.

fall_time is the time in ticks that the signal goes inactive (after the start
of the period) if the event is PSMC_EVENT _TIME, otherwise unused.

Events:

PSMC_EVENT_TIME
PSMC_EVENT_C10UT
PSMC_EVENT_C20UT
PSMC_EVENT_C30UT
PSMC_EVENT_C40UT
PSMC_EVENT _PIN_PIN

undefined

Initializes a PSMC unit with the primary characteristics such as the type
of PWM, the period, duty and various advanced triggers. Normally this
call does not start the PSMC. It is expected all the setup functions be
called and the psmc_pins() be called last to start the PSMC module.
These two calls are all that are required for a simple PWM. The other
functions may be used for advanced settings and to dynamically
change the signal.

All devices equipped with PSMC module.
None

// Simple PWM, 10khz out on pin CO assuming a 20mhz crystal
// Duty 1is initially set to 25%
setup_psmc (1, PSMC_SINGLE,
PSMC EVENT TIME | PSMC SOURCE FOSC, us(100),

341

CCS C Compiler

PSMC_EVENT TIME, O,
PSMC_EVENT TIME, us(25));
psmc_pins (1, PSMC A);

Example Files: None

psmc_deadband(), psmc_sync(), psmc_blanking(), psmc_modulation(),
Also See: psmc_shutdown(), psmc_duty(), psmc_freq _adjust(), psmc_pins()

setup_power_pwm()

Syntax: setup_power_pwm(modes, postscale, time_base, period, compare,
compare_postscale, dead_time)

Parameters: modes values may be up to one from each group of the following:
PWM_CLOCK_DIV_4, PWM_CLOCK_DIV_16,
PWM_CLOCK_DIV_64, PWM_CLOCK_DIV_128

PWM_DISABLED, PWM_FREE_RUN, PWM_SINGLE_SHOT,
PWM_UP_DOWN, PWM_UP_DOWN_INT

PWM_OVERRIDE_SYNC
PWM_UP_TRIGGER,

PWM_DOWN_TRIGGER
PWM_UPDATE_DISABLE, PWM_UPDATE_ENABLE

PWM_DEAD_CLOCK_DIV_2,
PWM_DEAD_CLOCK_DIV_4,
PWM_DEAD_CLOCK_DIV_8,
PWM_DEAD_CLOCK_DIV_16

postscale is an integer between 1 and 16. This value sets the PWM
time base output postscale.

time_base is an integer between 0 and 65535. This is the initial value
of the PWM base

period is an integer between 0 and 4095. The PWM time base is
incremented until it reaches this number.

compare is an integer between 0 and 255. This is the value that the
PWM time base is compared to, to determine if a special event should
be triggered.

342

Built-in Functions

Returns:
Function:

Availability:
Requires:

Examples:

Example Files:

Also See:

compare_postscale is an integer between 1 and 16. This postscaler
affects compare, the special events trigger.

dead_time is an integer between 0 and 63. This value specifies the
length of an off period that should be inserted between the going off of
a pin and the going on of it is a complementary pin.

undefined

Initializes and configures the motor control Pulse Width Modulation
(PWM) module.

All devices equipped with motor control or power PWM module.
None

setup power pwm(PWM CLOCK DIV 4 | PWM FREE RUN |
PWM_DEAD CLOCK_DIV_4,1,10000,1000,0,1,0);

None

set_power pwm_override(), setup_power pwm_pins(),
set_power pwmX_ duty()

setup_power_pwm_pins()

Syntax: setup_power_pwm_pins(module0,modulel,module2,module3)
Parameters: For each module (two pins) specify:
PWM_PINS_DISABLED, PWM_ODD_ON, PWM_BOTH_ON,
PWM_COMPLEMENTARY
Returns: undefined
Function: Configures the pins of the Pulse Width Modulation (PWM) device.
Availability: All devices equipped with a power control PWM.
Requires: None
setup power pwm pins (PWM PINS DISABLED, PWM PINS DISABLED,
Examples: PWM_PINS DISABLED,

PWM PINS DISABLED) ;

343

CCS C Compiler

Example Files:

Also See:

setup_power pwm pins (PWM_COMPLEMENTARY,
PWM_COMPLEMENTARY, PWM PINS DISABLED,
PWM_PINS DISABLED) ;

None

setup power pwm(),
set_power pwm_override(),set_power pwmX duty()

setup_psp(option,address_mask)

Syntax:

setup_psp (options,address_mask);
setup_psp(options);

Parameters:

Returns:

Function:

Availability:

Requires:

Option- The mode of the Parallel slave port. This allows to set the
slave port mode, read-write strobe options and other functionality of the
PMP/EPMP module. See the devices .h file for all options. Some typical
options include:

- PAR_PSP_AUTO_INC

- PAR_CONTINUE_IN_IDLE

- PAR_INTR_ON_RW /lInterrupt on read write

- PAR_INC_ADDR /lincrement address by 1 every
[Iread/write cycle

- PAR_WAITE4 /l4 Tcy Wait for data hold after
/Istrobe

address_mask- This allows the user to setup the address enable
register with a 16 bit or 32 bit (EPMP) value. This value determines
which address lines are active from the available 16 address lines
PMAO: PMA15 or 32 address lines PMAO:PMA31 (EPMP only).

Undefined.

Configures various options in the PMP/EPMP module. The options are
present in the device.h file and they are used to setup the module. The
PMP/EPMP module is highly configurable and this function allows users
to setup configurations like the Slave mode, Interrupt options, address
increment/decrement options, Address enable bits and various strobe
and delay options.

Only the devices with a built in Parallel Port module or Enhanced
Parallel Master Port module.

Constants are defined in the devices .h file.

344

Built-in Functions

setup psp (PAR PSP _AUTO_ INC| //Sets

up legacy slave

//mode with
Examples: PAR STOP_IN IDLE,OxO00FF); //read and write buffers
//auto increment.
Example Files: None
Also See: psp_output_full(), psp_input full(), psp_overflow(),

See header file for device selected.

setup_pwm1() setup_pwm2()
setup_pwm3() setup_pwm4()

Syntax: setup_pwml(settings);
setup_pwm2(settings);
setup_pwm3(settings);
setup_pwmd(settings);

Parameters: settings- setup of the PWM module. See the device's .h file for all

options.
Some typical options include:

PWM_ENABLED
PWM_OUTPUT
PWM_ACTIVE_LOW

Returns: Undefined

Function: Sets up the PWM module.

Availability: On devices with a PWM module.
Exanuﬂes; setup pwml (PWM_ENABLED|PWM OUTPUT) ;
Example Files: None

Also See: set pwm_duty()

setup_qgei()

Syntax: setup_gei(options, filter, maxcount);

345

CCS C Compiler

Parameters: Options- The mode of the QEI module. See the devices .h file for all
options

Some common options are:
- QEI_MODE_X2
. QEI_MODE_X4

filter - This parameter is optional, the user can enable the digital filters
and specify the clock divisor.

maxcount - Specifies the value at which to reset the position counter.

Returns: void
Function: Configures the Quadrature Encoder Interface. Various settings
like mode and filters can be setup.
Availability: Devices that have the QEI module.
Requires: Nothing.
setup_gei (QEI MODE X2 |QEI RESET WHEN MAXCOUNT,
Examples: QEI FILTER ENABLE QEA|QEI FILTER DIV 2,0x1000);
Example Files: None
Also See: gei_set _count() , gei_get count() , gei_status()

setup_rtc()

Syntax: setup_rtc() (options, calibration);
Parameters: Options- The mode of the RTCC module. See the devices .h file for all
options

Calibration- This parameter is optional and the user can specify an 8
bit value that will get written to the calibration configuration register.

Returns: void

Function: Configures the Real Time Clock and Calendar module. The module
requires an external 32.768 kHz clock crystal for operation.

Availability: Devices that have the RTCC module.

Requires: Nothing.

346

Built-in Functions

Examples:

Example Files:

Also See:

setup rtc(RTC ENABLE | RTC OUTPUT SECONDS, 0x00);
// Enable RTCC module with seconds clock and no calibration

None

ric_read(), ric_alarm_read(), rtc_alarm_write(), setup_rtc_alarm(),
rtc_write(, setup_rtc()

setup_rtc_alarm()

Syntax: setup_rtc_alarm(options, mask, repeat);

Parameters: options- The mode of the RTCC module. See the devices .h file for all
options
mask- specifies the alarm mask bits for the alarm configuration.
repeat- Specifies the number of times the alarm will repeat. It can have
a max value of 255.

Returns: void

Function: Configures the alarm of the RTCC module.

Availability: Devices that have the RTCC module.

Requires: Nothing.
setup rtc alarm(RTC ALARM ENABLE, RTC ALARM HOUR, 3);

Examples: - - - - - -

Example Files:

Also See:

None

rtc_read(), rtc_alarm_read(), rtc_alarm_write(), setup _rtc_alarm(),
rtc_write(), setup_rtc()

setup_smtx()

Syntax: setup_smtl(mode,[period]);
setup_smt2(mode,[period]);
Parameters: mode - The setup of the SMT module. See the device's .h file for all

347

CCS C Compiler

Returns:
Function:
Availability:
Examples:

Example Files:
Also See:

aoptions. Some

typical options include:
SMT_ENABLED
SMT_MODE_TIMER
SMT_MODE_GATED_TIMER
SMT_MODE_PERIOD_DUTY_CYCLE_ACQ

period - Optional parameter for specifying the overflow value of the
SMT timer, defaults

to maximum value if not specified.

Nothing

Configures the Signal Measurement Timer (SMT) module.

Only devices with a built-in SMT module.

setup smtl (SMT_ENABLED | SMT MODE_PERIOD DUTY CYCLE ACQ|

SMT REPEAT DATA ACQ MODE | SMT CLK FOSC);

None

smtx_status(), stmx_start(), smtx_stop(), smtx_update(),
smtx_reset_timer(),
smtx_read(), smtx_write()

setup_spi()

setup_spi2()

Syntax: setup_spi (mode)
setup_spi2 (mode)
Parameters: mode may be:
. SPI_MASTER, SPI_SLAVE, SPI_SS_DISABLED
. SPI_L_TO_H, SPI_H_TO_L
3 SPI_CLK_DIV_4, SPI_CLK_DIV_186,
3 SPI_CLK_DIV_64, SPI_CLK_T2
3 SPI_SAMPLE_AT_END, SPI_XMIT_L_TO_H
° Constants from each group may be or'ed together
with |.
Returns: undefined
Function: Initializes the Serial Port Interface (SPI). This is used for 2 or 3 wire
serial devices that follow a common clock/data protocol.
Also See: spi_write(), spi_read(), spi_data _is_in(), SPI Overview

348

Built-in Functions

setup_timer_A()

Syntax: setup_timer_A (mode);

Parameters: mode values may be:
- TA_OFF, TA_INTERNAL, TA_EXT_H_TO L, TA EXT L TO H
- TA_DIV_1, TA DIV_2, TA_DIV_4, TA_DIV_8, TA _DIV_16,
TA_DIV_32,
TA_DIV_64, TA DIV_128, TA DIV_256
- constants from different groups may be or'ed together with |.

Returns: undefined
Function: sets up Timer A.
Availability: This function is only available on devices with Timer A hardware.
Requires: Constants are defined in the device's .h file.
setup timer A(TA OFF);

) setup timer A(TA INTERNAL | TA DIV 256);
Examples: setup timer A(TA EXT I TO H | TA DIV 1);
Example Files: none
Also See: get_timerA(), set_timerA(), TimerA Overview

setup_timer_B()

Syntax: setup_timer_B (mode);

Parameters: mode values may be:
- TB_OFF, TB_INTERNAL, TB_EXT_H_TO_L, TB_EXT L_TO_H
- TB_DIV_1, TB_DIV_2, TB_DIV_4, TB_DIV_8, TB_DIV_16,
TB_DIV_32,
TB_DIV_64, TB_DIV_128, TB_DIV_256
- constants from different groups may be or'ed together with |.

Returns: undefined

Function: sets up Timer B

349

CCS C Compiler

This function is only available on devices with Timer B hardware.

Availability:
Requires: Constants are defined in device's .h file.
setup timer B(TB OFF);
les: setup_timer B(TB INTERNAL | TB DIV 256);
Examples: setup timer B(TA EXT L TO H | TB DIV 1);
Example Files: none
Also See: get_timerB(), set_timerB(), TimerB Overview

setup_timer_0()

Syntax: setup_timer_0 (mode)

Parameters: mode may be one or two of the constants defined in the devices .h
file. RTCC_INTERNAL, RTCC_EXT_L_TO_H or RTCC_EXT_H_TO_L

RTCC_DIV_2, RTCC_DIV_4, RTCC_DIV_8, RTCC_DIV_16,
RTCC_DIV_32, RTCC_DIV_64, RTCC_DIV_128, RTCC_DIV_256

PIC18XXX only: RTCC_OFF, RTCC_8_BIT

One constant may be used from each group or'ed together with the |

operator.
Returns: undefined
Function: Sets up the timer 0 (aka RTCC).

On older PIC16 devices, set-up of the prescaler may undo the WDT
Warning: prescaler.

Availability: All devices.
Requires: Constants are defined in the devices .h file.

Examples: setup timer 0 (RTCC DIV 2|RTCC EXT L TO H);

Example Files:
Also See: get_timerQ(), set_timer0(), setup counters()

350

Built-in Functions

setup_timer_1()

Syntax: setup_timer_1 (mode)
Parameters: mode values may be:
. T1_DISABLED, T1_INTERNAL, T1_EXTERNAL,
T1_EXTERNAL_SYNC
. T1_CLK_OUT
. T1_DIV_BY_1,T1_DIV_BY_2, T1_DIV_BY_4,
T1_DIV_BY_8
. constants from different groups may be or'ed together
with |.
Returns: undefined
Function: Initializes timer 1. The timer value may be read and written to using
SET_TIMER1() and GET_TIMER1()Timer 1 is a 16 bit timer.
With an internal clock at 20mhz and with the T1_DIV_BY_8 mode, the
timer will increment every 1.6us. It will overflow every 104.8576ms.
Availability: This function is only available on devices with timer 1 hardware.
Requires: Constants are defined in the devices .h file.
setup timer 1 (Tl DISABLED);
setup_timer 1 (T1 INTERNAL | T1 DIV BY 4);
Examples: - - - DIV BY 8);

Example Files:
Also See:

setup timer 1 (T1 INTERNAL | T1 DIV BY 8)

get _timerl(), set_timerl() , Timerl Overview

setup_timer_2()

Syntax:

setup_timer_2 (mode, period, postscale)

Parameters:

mode may be one of:

. T2_DISABLED

. T2 _DIV_BY_1, T2 DIV_BY_4,T2 DIV_BY_16
Period is a int 0-255 that determines when the clock value is reset
Postscale is a number 1-16 that determines how many timer overflows
before an interrupt: (1 means once, 2 means twice, an so on)

351

CCS C Compiler

Returns: undefined
Function: Initializes timer 2. The mode specifies the clock divisor (from the
oscillator clock).
The timer value may be read and written to using GET_TIMER2() and
SET_TIMER2().
2 is a 8-bit counter/timer.
Availability: This function is only available on devices with timer 2 hardware.
Requires: Constants are defined in the devices .h file.
setup_timer 2 (T2 DIV _BY 4, 0xc0, 2) //at 20mhz, the
timer will
//increment every
E les: 800ns
xamples: //will overflow
every 154.4us,
//and will
interrupt every 308.us
Example Files:
Also See: get_timer2(), set_timer2() , Timer2 Overview
setup_timer_3()
Syntax: setup_timer_3 (mode)
Parameters: Mode may be one of the following constants from each group or'ed (via
|) together:
° T3_DISABLED, T3_INTERNAL, T3_EXTERNAL,
T3_EXTERNAL_SYNC
° T3 _DIV_BY_1, T3 DIV_BY_2, T3 DIV_BY_4,
T3 DIV_BY_8
Returns: undefined
Function: Initializes timer 3 or 4.The mode specifies the clock divisor (from the

oscillator clock). The timer value may be read and written to using
GET_TIMER3() and SET_TIMERS3(). Timer 3 is a 16 bit counter/timer.

This function is only available on devices with timer 3 hardware.

Availability:
Requires: Constants are defined in the devices .h file.
Examples: setup_timer 3 (T3_INTERNAL | T3 DIV BY 2);

352

Built-in Functions

Example Files:

Also See:

None

get_timer3(), set_timer3()

setup_timer_4()

Syntax: setup_timer_4 (mode, period, postscale)
Parameters: mode may be one of:
. T4 _DISABLED, T4 _DIV_BY_1, T4 DIV_BY_4,
T4 _DIV_BY_16
period is a int 0-255 that determines when the clock value is reset,
postscale is a number 1-16 that determines how many timer overflows
before an interrupt: (1 means once, 2 means twice, and so on).
Returns: undefined
Function: Initializes timer 4. The mode specifies the clock divisor (from the
oscillator clock).
The timer value may be read and written to using GET_TIMER4() and
SET_TIMERA4().
Timer 4 is a 8 bit counter/timer.
Availability: This function is only available on devices with timer 4 hardware.
Requires: Constants are defined in the devices .h file
setup timer 4 (T4 DIV _BY 4, 0xc0, 2);
// At 20mhz, the timer will increment every 800ns,
Examples: // will overflow every 153.6us,

Example Files:

Also See:

// and will interrupt every 307.2us.

get_timer4(), set_timer4()

setup_timer_5()

Syntax:

setup_timer_5 (mode)

Parameters:

mode may be one or two of the constants defined in the devices .h

353

CCS C Compiler

Returns:

Function:

Availability:
Requires:

Examples:
Example Files:

Also See:

file.

T5_DISABLED, T5_INTERNAL, T5_EXTERNAL, or
EXTERNAL_SYNC

T5_DIV_BY_1, T5 DIV_BY_2, T5_DIV_BY_4, T5 _DIV_BY_8

T5_ONE_SHOT, T5_DISABLE_SE_RESET, or
T5_ENABLE_DURING_SLEEP

undefined

Initializes timer 5. The mode specifies the clock divisor (from the
oscillator clock). The timer value may be read and written to using
GET_TIMER5() and SET_TIMERS(). Timer 5 is a 16 bit
counter/timer.

This function is only available on devices with timer 5 hardware.

Constants are defined in the devices .h file.

setup timer 5 (TS5 INTERNAL | T5 DIV BY 2);
None

get timer5(), set timer5(), Timer5 Overview

setup_uart()

Syntax: setup_uart(baud, stream)
setup_uart(baud)
setup_uart(baud, stream, clock)
Parameters: baud is a constant representing the number of bits per second. A

one or zero may also be passed to control the on/off status.
Stream is an optional stream identifier.

Chips with the advanced UART may also use the following
constants:

UART_ADDRESS UART only accepts data with 9th bit=1
UART_DATA UART accepts all data

Chips with the EUART H/W may use the following constants:
UART_AUTODETECT Waits for 0x55 character and sets the UART
baud rate to match.

UART_AUTODETECT NOWAIT Same as above function, except

354

Built-in Functions

Returns:
Function:

Availability:
Requires:

Examples:

Example Files:

Also See:

returns before 0x55 is received. KBHIT() will be true when the
match is made. A call to GETC() will clear the character.
UART_WAKEUP_ON_RDA Wakes PIC up out of sleep when RCV
goes from high to low

clock - If specified this is the clock rate this function should assume.
The default comes from the #USE DELAY.

undefined

Very similar to SET_UART_SPEED. If 1 is passed as a parameter,
the UART is turned on, and if 0 is passed, UART is turned off. If a
BAUD rate is passed to it, the UART is also turned on, if not already
on.

This function is only available on devices with a built in UART.

#USE RS232

setup uart (9600);
setup uart (9600, rsOut);

None

#USE RS232, putc(), getc(), RS232 |/O Overview

setup_vref()

Syntax: setup_vref (mode | value)
Parameters: mode may be one of the following constants:
. FALSE (off)
. VREF_LOW for VDD*VALUE/24
. VREF_HIGH for VDD*VALUE/32 + VDD/4
° any may be or'ed with VREF_A2.
value is an int 0-15.
Also See: Voltage Reference Overview

355

CCS C Compiler

setup_wdt()

Syntax: setup_wdt (mode)

Parameters: Constants like: WDT_18MS, WDT_36MS, WDT_72MS,
WDT_144MS,WDT_288MS, WDT_576MS, WDT_1152MS,
WDT_2304MS

For some parts: WDT_ON, WDT_OFF

On older PIC16 devices, set-up of the prescaler may undo the

Warning: timer0 prescaler.
Also #FUSES , restart_wdt() , WDT or Watch Dog Timer
See: Overview

Internal Oscillator Overview

setup_zdc()

Syntax: setup_zdc(mode);

Parameters: mode- the setup of the ZDC module. The options for setting up the
module include:

. ZCD_ENABLED

° ZCD_DISABLED

o ZCD_INVERTED

o ZCD_INT_L_TO_H

. ZCD_INT_H_TO_L
Returns: Nothing
Function: To set-up the Zero_Cross Detection (ZCD) module.
Availability: All devices with a ZCD module.
Examples: setup_zcd (ZCD_ENABLE | ZCD_INT H TO L);
Example Files: None
Also See: zcd_status()

356

Built-in Functions

shift_left()

Syntax: shift_left (address, bytes, value)

Parameters: address is a pointer to memory.
bytes is a count of the number of bytes to work with
value is a 0 to 1 to be shifted in.

0 or 1 for the bit shifted out

Returns:

Function: Shifts a bit into an array or structure. The address may be an array
identifier or an address to a structure (such as &data). Bit O of the
lowest byte in RAM is treated as the LSB.

Availability: All devices

Requires: Nothing

byte buffer[3];
for (i=0; i<=24; ++1){
// Wait for clock high
while (!input (PIN A2));
shift left (buffer, 3, input (PIN A3));
Exanwﬂesj // Wait for clock low
while (input (PIN_A2));
}
// reads 24 bits from pin A3,each bit is read
// on a low to high on pin A2

Example Files: ex_extee.c, 9356.c

shift_right(), rotate_right(), rotate left(),

Also See:

shift_right()

Syntax: shift_right (address, bytes, value)

Parameters: address is a pointer to memory
bytes is a count of the number of bytes to work with
value is a 0 to 1 to be shifted in.

Returns: 0 or 1 for the bit shifted out

357

../HelpFile/CCSC/javascript:shortcutlink.click()
../HelpFile/CCSC/javascript:shortcutlink2.click()

CCS C Compiler

Function:

Availability:

Requires:

Examples:

Example Files:

Also See:

Shifts a bit into an array or structure. The address may be an array
identifier or an address to a structure (such as &data). Bit 0 of the
lowest byte in RAM is treated as the LSB.

All devices

Nothing

// reads 16 bits from pin Al, each bit is read
// on a low to high on pin A2

struct {
byte time;
byte command : 4;
byte source : 4;} msg;

for (i=0; i<=16; ++1) {
while (!input (PIN A2));
shift right (&msg, 3, input (PIN Al));
while (input(PIN A2)) ;}

// This shifts 8 bits out PIN AO, LSB first.

for (i=0;1i<8;++1)
output bit (PIN AO0,shift right(&data,1,0));

ex_extee.c, 9356.c

shift_left(), rotate_right(), rotate_left(),

sleep()

Syntax: sleep(mode)

Parameters: mode - for most chips this is not used. Check the device header for
special options on some chips.

Returns: Undefined

Function: Issues a SLEEP instruction. Details are device dependent.
However, in general the part will enter low power mode and halt
program execution until woken by specific external
events. Depending on the cause of the wake up execution may
continue after the sleep instruction. The compiler inserts a sleep()
after the last statement in main().

Availability: All devices

358

../HelpFile/CCSC/javascript:shortcutlink.click()
../HelpFile/CCSC/javascript:shortcutlink2.click()

Built-in Functions

Requires: Nothing
Examples: SLEER ()
Example Files: ex_wakup.c
Also See: reset cpu()

sleep_ulpwu()

Syntax: sleep_ulpwu(time)

Parameters: time specifies how long, in us, to charge the capacitor on the ultra-
low power wakeup pin (by outputting a high on PIN_BO).

Returns: undefined
Function: Charges the ultra-low power wake-up capacitor on PIN_BO for time
microseconds, and then puts the PIC to sleep. The PIC will then
wake-up on an 'Interrupt-on-Change' after the charge on the cap is
lost.
Ultra Low Power Wake-Up support on the PIC (example,
Availability: PIC124F32KA302)
Requires: #USE DELAY
while (TRUE)
{
if (input (PIN_Al))
//do something
. else
Examples: sleep ulpwu(10); //cap will be charged for
10us,
//then goto sleep
}
Example Files: None
Also See: #USE DELAY

359

../HelpFile/CCSC/javascript:shortcutlink.click()

CCS C Compiler

smtx_read()

Syntax:

value_smtl_read(which);
value_smt2_read(which);

Parameters:

Returns:

Function:

Availability:
Examples:

Example Files:
Also See:

which - Specifies which SMT registers to read. The following

defines have been made

in the device's header file to select which registers are read:
SMT_CAPTURED_PERIOD_REG
SMT_CAPTURED_PULSE_WIDTH_REG
SMT_TMR_REG
SMT_PERIOD_REG

32-bit value

To read the Capture Period Registers, Capture Pulse Width
Registers,

Timer Registers or Period Registers of the Signal Measurement
Timer module.

Only devices with a built-in SMT module.
unsigned int32 Period,;
Period = smtl_read (SMT_CAPTURED PERIOD REG) ;

None

smitx_status(), stmx_start(), smtx_stop(), smtx_update(),
smtx_reset_timer(),
setup SMTx(), smtx_ write()

smtx_reset_timer()

Syntax: smtl_reset_timer();
smt2_reset_timer();

Parameters: None

Returns: Nothing

Function: To manually reset the Timer Register of the Signal Measurement
Timer module.

Availability: Only devices with a built-in SMT module.

360

Built-in Functions

Examples:

Example Files:
Also See:

smtl reset timer();

None

setup_smtx(), stmx_start(), smtx_stop(), smtx_update(),

smtx_status(),

smtx_read(), smtx_write()

smtx_start()

Syntax: smtl_start();
smt2_start();

Parameters: None

Returns: Nothing

Function: To have the Signal Measurement Timer (SMT) module start
acquiring data.

Availability: Only devices with a built-in SMT module.

Examples: smtl start();

Example Files:

Also See:

None

smtx_status(), setup smtx(), smtx_stop(), smtx_update(),
smtx_reset_timer(),
smtx_read(), smtx_ write()

smtx_status()

Syntax: value = smtl_status();
value = smt2_status();

Parameters: None

R . The status of the SMT module.

eturns:

Function: To return the status of the Signal Measurement Timer (SMT)
module.

Availability: Only devices with a built-in SMT module.

Examples: status = smtl status();

361

CCS C Compiler

Example Files:
Also See:

None

setup_smtx(), stmx_start(), smtx_stop(), smtx_update(),
smtx_reset timer(),
smtx_read(), smtx_write()

smtx_stop()

Syntax: smtl_stop();
smt2_stop();
Parameters: None
Returns: Nothing
Function: Configures the Signal Measurement Timer (SMT) module.
Availability: Only devices with a built-in SMT module.
Examples: smtl stop ()
None

Example Files:
Also See:

smtx_status(), stmx_start(), setup smtx(), smtx_update(),
smtx_reset_timer(),
smtx_read(), smtx_write()

smtx_write()

Syntax:

smtl_write(which,value);
smt2_write(which,value);

Parameters:

Returns:

Function:

which - Specifies which SMT registers to write. The following
defines have been made
in the device's header file to select which registers are written:
SMT_TMR_REG
SMT_PERIOD_REG

value - The 24-hit value to set the specified registers.
Nothing

To write the Timer Registers or Period Registers of the Signal
Measurement

362

Built-in Functions

Availability:
Examples:

Example Files:
Also See:

Timer (SMT) module

Only devices with a built-in SMT module.
smtl write (SMT_ PERIOD REG, 0x100000000) ;

None
smtx_status(), stmx_start(), setup_smtx(), smtx_update(),

smtx_reset timer(),
smtx_read(), setup smtx()

smtx_update()

Syntax: smtl_update(which);
smt2_update(which);

Parameters: which - Specifies which capture registers to manually update. The
following defines have been made in the device's header file to
select which registers are updated:

SMT_CAPTURED_PERIOD_REG
SMT_CAPTURED_PULSE_WIDTH_REG

Returns: Nothing

Function: To manually update the Capture Period Registers or the Capture
Pulse Width
Registers of the Signal Measurement Timer module.

Availability: Only devices with a built-in SMT module.

Examples; smtl update (SMT CAPTURED PERIOD REG) ;

Example Files:

None

Also See: setup _smtx(), stmx_start(), smtx stop(), smitx_status(),
smtx_reset timer(),
smtx_read(), smtx_write()
spi_data is_in() spi_data is_in2()
Syntax: result = spi_data_is_in()
result = spi_data_is_in2()
Parameters: None

363

CCS C Compiler

Returns:
Function:

Availability:

Requires:

Examples:

Example Files:

Also See:

0 (FALSE) or 1 (TRUE)
Returns TRUE if data has been received over the SPI.
This function is only available on devices with SPI hardware.

Nothing

(!spi data is in() && input(PIN B2));
if(spi_data is in())
data = spi_read();

None

spi_read(), spi_write(), SPI Overview

spi_init()

Syntax:

spi_init(baud);
spi_init(stream,baud);

Parameters:

Returns:

Function:

Availability:

Requires:

Examples:

Example Files:

stream — is the SPI stream to use as defined in the STREAM=name
option in #USE SPI.

band- the band rate to initialize the SPI module to. If FALSE it will
disable the SPI module, if TRUE it will enable the SPI module to the
band rate specified in #use SPI.

Nothing.
Initializes the SPI module to the settings specified in #USE SPI.
This function is only available on devices with SPI hardware.

#USE SPI

#use spi (MATER, SPI1, baud=1000000, mode=0,
stream=SPI1 MODEO)

spi_init (SPI1 MODEO, TRUE); //initialize and enable SPIl
to setting in #USE SPI

spi_init (FALSE); //disable SPI1l

spi init (250000);//initialize and enable SPI1l to a baud
rate of 250K
None

364

Built-in Functions

Also See:

#USE SPI, spi_xfer(), spi_xfer_in(), spi_prewrite(), spi_speed()

spi_prewrite(data);

Syntax:

spi_prewrite(data);
sSpi_prewrite(stream, data);

Parameters:

Returns:
Function:

Availability:
Requires:

Examples:

Example Files:

Also See:

stream — is the SPI stream to use as defined in the STREAM=name
option in #USE SPI.

data- the variable or constant to transfer via SPI

Nothing.

Writes data into the SPI buffer without waiting for transfer to be
completed. Can be used in conjunction with spi_xfer() with no
parameters to transfer more then 8 bits for PCM and PCH device, or
more then 8 bits or 16 bits (XFER16 option) for PCD. Function is
useful when using the SSP or SSP2 interrupt service routines for
PCM and PCH device, or the SPIx interrupt service routines for PCD
device.

This function is only available on devices with SPI hardware.

#USE SPI, and the option SLAVE is used in #USE SPI to setup PIC
as a SPI slave device

spi_prewrite(data_out);

ex_spi_slave.c

#USE SPI, spi_xfer(), spi_xfer_in(), spi_init(), spi_speed()

spi_read() spi_read2()

Syntax: value = spi_read ([data])
value = spi_read?2 ([data])
Parameters: data — optional parameter and if included is an 8 bit int.
Returns: An 8 bit int
Function: Return a value read by the SPI. If a value is passed to the

spi_read() the data will be clocked out and the data received will be

365

CCS C Compiler

Availability:
Requires:

Examples:
Example Files:

Also See:

returned. If no data is ready, spi_read() will wait for the data is a
SLAVE or return the last DATA clocked in from spi_write().

If this device is the MASTER then either do a spi_write(data)
followed by a spi_read() or do a spi_read(data). These both do the
same thing and will generate a clock. If there is no data to send just
do a spi_read(0) to get the clock.

If this device is a SLAVE then either call spi_read() to wait for the
clock and data or use_spi_data_is_in() to determine if data is ready.
This function is only available on devices with SPI hardware.
Nothing

data in = spi read(out data);

ex_spi.c

spi_write(), , , spi_data_is_in(), SPI Overview

spi_read2 16() spi_read3 16()
spi_read4 16()

Syntax:

value = spi_read_16([data]);

value = spi_read2_16([data]);
value = spi_read3_16([data]);
value = spi_read4_16([data]);

Parameters:

Returns:

Function:

Availability:

data — optional parameter and if included is a 16 bit int
A 16 bit int

Return a value read by the SPI. If a value is passed to the
spi_read_16() the data will be clocked out and the data received will
be returned. If no data is ready, spi_read_16() will wait for the data
is a SLAVE or return the last DATA clocked in from spi_write_16().
If this device is the MASTER then either do a spi_write_16(data)
followed by a spi_read_16() or do a spi_read_16(data). These both
do the same thing and will generate a clock. If there is no data to
send just do a spi_read_16(0) to get the clock.

If this device is a slave then either call spi_read_16() to wait for the
clock and data or use_spi_data_is_in() to determine if data is ready.

This function is only available on devices with SPI hardware.

366

../HelpFile/CCSC/javascript:shortcutlink.click()

Built-in Functions

Requires:

Examples:
Example Files:
Also See:

NThat the option SPI_MODE_16B be used in setup_spi() function,
or that the option XFER16 be used in #use SPI(

data in = spi read 16(out data);
None

spi_read(), spi_write(), spi_write_16(), spi_data_is_in(), SPI
Overview

spi_speed

Syntax: spi_speed(baud);
spi_speed(stream,baud);
spi_speed(stream,baud,clock);
Parameters: stream — is the SPI stream to use as defined in the STREAM=name
option in #USE SPI.
band- the band rate to set the SPI module to
clock- the current clock rate to calculate the band rate with.
If not specified it uses the value specified in #use delay ().
Returns: Nothing.
Function: Sets the SPI module's baud rate to the specified value.
Availability: This function is only available on devices with SPI hardware.
Requires: #USE SPI
spi_speed(250000);
Examples: spi_speed(SPI1_MODEO, 250000);

Example Files:

spi_speed(SPI1_MODEO, 125000, 8000000);
None

Also See: #USE SPI, spi_xfer(), spi_xfer_in(), spi_prewrite(), spi_init()
spi_write() spi_write2()
Syntax: spi_write(Jwait],value);
spi_write2([wait],value);
Parameters: value is an 8 bit int

367

CCS C Compiler

Returns:

Function:

Availability:
Requires:

Examples:

Example Files:

Also See:

wait- an optional parameter specifying whether the function will wait
for the SPI transfer to complete before exiting. Default is TRUE if
not specified.

Nothing

Sends a byte out the SPI interface. This will cause 8 clocks to be
generated. This function will write the value out to the SPI. At the
same time data is clocked out data is clocked in and stored in a
receive buffer. spi_read() may be used to read the buffer.

This function is only available on devices with SPI hardware.

Nothing
spi write(data out);
data in = spi read();
ex_spi.c

spi_read(), spi_data _is_in(), SPI Overview, spi_write 16(),

spi_read 160

spi_xfer()

Syntax: spi_xfer(data)
spi_xfer(stream, data)
spi_xfer(stream, data, bits)
result = spi_xfer(data)
result = spi_xfer(stream, data)
result = spi_xfer(stream, data, bits)
Parameters: data is the variable or constant to transfer via SPI. The pin used to
transfer data is defined in the DO=pin option in #use spi.
stream is the SPI stream to use as defined in the STREAM=name
option in #USE SPI.
bits is how many bits of data will be transferred.
The data read in from the SPI. The pin used to transfer result is
Returns: defined in the DI=pin option in #USE SPI.
Function: Transfers data to and reads data from an SPI device.

368

../HelpFile/CCSC/javascript:shortcutlink.click()

Built-in Functions

Availability:
Requires:

Examples:

Example Files:

Also See:

All devices with SPI support.

#USE SPI

int 1 = 34;

spi xfer(i);

// transfers the number 34 via SPI

int trans = 34, res;

res = spi xfer(trans);

// transfers the number 34 via SPI

// also reads the number coming in from SPI

None

#USE SPI

SPI_XFER_IN()

Syntax: value = spi_xfer_in();
value = spi_xfer_in(bits);
value = spi_xfer_in(stream,bits);

Parameters: stream — is the SPI stream to use as defined in the STREAM=name
option in #USE SPI.
bits — is how many bits of data to be received.

Returns: The data read in from the SPI

Function: Reads data from the SPI, without writing data into the transmit buffer
first.

S This function is only available on devices with SPI hardware.

Availability:

Requires: #USE SPI, and the option SLAVE is used in #USE SPI to setup PIC
as a SPI slave device.

Examples: data in = spi xfer in();

Example Files:

Also See:

ex_spi_slave.c

#USE SPI, spi_xfer(), spi_prewrite(), spi_init(), spi_speed()

sprintf()

Syntax:

sprintf(string, cstring, values...);

369

CCS C Compiler

bytes=sprintf(string, cstring, values...)

Parameters:

Returns:

Function:

Availability:
Requires:

Examples:

Example Files:

Also See:

string is an array of characters.

cstring is a constant string or an array of characters null
terminated.

Values are a list of variables separated by commas. Note that
format specifies do not work in ram band strings.

Bytes is the number of bytes written to string.

This function operates like printf() except that the output is placed into
the specified string. The output string will be terminated with a

null. No checking is done to ensure the string is large enough for the
data. See printf() for details on formatting.

All devices.

Nothing

char mystring[20];
long mylong;

mylong=1234;
sprintf (mystring, "<%$lu>",mylong) ;

// mystring now has:
// <1234>\0

None

printf()

sqrt()

Syntax: result = sqrt (value)

Parameters: value is a float

Returns: A float

Function: Computes the non-negative square root of the float value x. If the

argument is negative, the behavior is undefined.

Note on error handling:

If "errno.h" is included then the domain and range errors are stored in
the errno variable. The user can check the errno to see if an error has
occurred and print the error using the perror function.

370

Built-in Functions

Domain error occurs in the following cases:
sqrt: when the argument is negative

Availability: All devices.

Requires: #INCLUDE <math.h>

Examples: distance = sqgrt(pow ((x1-x2),2)+pow((yl-v2),2));

Example Files: None

Also See: None

srand()

Syntax: srand(n)

Parameters: n is the seed for a new sequence of pseudo-random numbers to be
returned by subsequent calls to rand.

Returns: No value.

Function: The srand() function uses the argument as a seed for a new
sequence of pseudo-random numbers to be returned by subsequent
calls to rand. If srand() is then called with same seed value, the
sequence of random numbers shall be repeated. If rand is called
before any call to srand() have been made, the same sequence shall
be generated as when srand() is first called with a seed value of 1.

Availability: All devices.

Requires: #INCLUDE <STDLIB.H>
srand (10) ;

Examples: I=rand();

Example Files: None
rand()

Also See:

371

CCS C Compiler

STANDARD STRING FUNCTIONS()
memchr() memcmp() strcat()

strchr() stremp() strcoll()

strcspn() strerror() stricmp()

strlen() striwr() strncat()
strncmp() strncpy() strpbrk()
strrchr() strspn() strstr() strxfrm()
Syntax: ptr=strcat (s1, s2) Concatenate s2 onto s1

ptr=strchr (s1, c)
ptr=strrchr (si1, c)
cresult=strcmp (s1, s2)
iresult=strncmp (s1, s2, n)
iresult=stricmp (s1, s2)
ptr=strncpy (s1, s2, n)
iresult=strcspn (s1, s2)

iresult=strspn (s1, s2)

iresult=strlen (s1)
ptr=striwr (s1)
ptr=strpbrk (s1, s2)
ptr=strstr (s1, s2)
ptr=strncat(s1,s2, n)

iresult=strcoll(s1,s2)

res=strxfrm(s1,s2,n)

iresult=memcmp(m1,m2,n)
ptr=memchr(m1,c,n)

ptr=strerror(errnum)

Find c in s1 and return &s1[i]
Same but search in reverse
Compare sl to s2

Compare sl to s2 (n bytes)
Compare and ignore case

Copy up to n characters s2->s1
Count of initial chars in s1 not in s2
Count of initial chars in s1 also in
s2

Number of characters in s1
Convert string to lower case
Search s1 for first char also in s2
Search for s2 in s1
Concatenates up to n bytes of s2
onto s1

Compares sl to s2, both
interpreted as appropriate to the
current locale.

Transforms maximum of n
characters of s2 and places them
in s1, such that strcmp(s1,s2) will
give the same result as
strcoll(s1,s2)

Compare mlto m2 (n bytes)
Find c in first n characters of m1
and return &mZ1]i]

Maps the error number in errnum
to an error message string. The
parameters 'errnum’ is an unsigned
8 bit int. Returns a pointer to the
string.

Parameters: s1 and s2 are pointers to an array of characters (or the name of an

372

Built-in Functions

array). Note that s1 and s2 MAY NOT BE A CONSTANT (like "hi").
n is a count of the maximum number of character to operate on.

c is a 8 bit character

m1 and m2 are pointers to memory.

ptr is a copy of the s1 pointer

iresult is an 8 bit int

Returns: result is -1 (less than), 0 (equal) or 1 (greater than)
res is an integer.

Function: Functions are identified above.
Availability: All devices.
Requires: #include <string.h>

char stringl[10], string2([10];

strcpy (stringl,"hi ");

strcpy (string2, "there") ;
Exanuﬂes; strcat (stringl,string2);

printf ("Length is %ul\r\n", strlen(stringl));
// Will print 8

Example Files: ex_str.c

Also See: strepy(), strtok()

strcpy() strcopy()

Syntax: strcpy (dest, src)
strcopy (dest, src)

Parameters: dest is a pointer to a RAM array of characters.
src may be either a pointer to a RAM array of characters or it may be a
constant string.

Returns: undefined
Function: Copies a constant or RAM string to a RAM string. Strings are terminated
with a 0.

373

../HelpFile/CCSC/javascript:shortcutlink.click()

CCS C Compiler

Availability:
Requires:

Examples:

Example Files:

Also See:

All devices.
Nothing

char string[10], string2[10];

strcpy (string, "Hi There");

strcpy (string2,string);
ex_str.c

Strxxxx()

strtod()

Syntax:

result=strtod(nptr,& endptr)

Parameters:

Returns:

Function:

Availability:

Requires:

Examples:

Example Files:

nptr and endptr are strings

result is a float.
returns the converted value in result, if any. If no conversion could be
performed, zero is returned.

The strtod function converts the initial portion of the string pointed to
by nptr to a float representation. The part of the string after
conversion is stored in the object pointed to endptr, provided that
endptr is not a null pointer. If nptr is empty or does not have the
expected form, no conversion is performed and the value of nptr is
stored in the object pointed to by endptr, provided endptr is not a null
pointer.

All devices.

#INCLUDE <stdlib.h>

float result;

char str[12]="123.45hello";
char *ptr;

result=strtod(str, &ptr) ;
//result is 123.45 and ptr is "hello"

None

374

../HelpFile/CCSC/javascript:shortcutlink.click()

Built-in Functions

Also See:

strtol(), strtoul()

strtok()

Syntax: ptr = strtok(s1, s2)

Parameters: sl and s2 are pointers to an array of characters (or the name of an
array). Note that s1 and s2 MAY NOT BE A CONSTANT (like "hi").
s1 may be 0 to indicate a continue operation.

Returns: ptr points to a characterin sl oris 0

Function: Finds next token in s1 delimited by a character from separator string
s2 (which can be different from call to call), and returns pointer to it.
First call starts at beginning of s1 searching for the first character
NOT contained in s2 and returns null if there is none are found.

If none are found, it is the start of first token (return value). Function
then searches from there for a character contained in s2.

If none are found, current token extends to the end of s1, and
subsequent searches for a token will return null.

If one is found, it is overwritten by "\O', which terminates current
token. Function saves pointer to following character from which next
search will start.

Each subsequent call, with O as first argument, starts searching from
the saved pointer.

Availability: All devices.

Requires: #INCLUDE <string.h>
char string[30], term[3], *ptr;
strcpy (string, "one, two, three;");
strcpy (term, ", ;") ;

EX&HHMES: ptr = strtok(string, term);

while (ptr!=0) {
puts (ptr) ;
ptr = strtok (0, term);
}
// Prints:
one

375

CCS C Compiler

Example Files:

two
three

ex_str.c

Strxxxx(), strepy()

Also See:

strtol()

Syntax: result=strtol(nptr,& endptr, base)

Parameters: nptr and endptr are strings and base is an integer
result is a signed long int.

. returns the converted value in result, if any. If no conversion could

Returns: .
be performed, zero is returned.

Function: The strtol function converts the initial portion of the string pointed to
by nptr to a signed long int representation in some radix determined
by the value of base. The part of the string after conversion is stored
in the object pointed to endptr, provided that endptr is not a null
pointer. If nptr is empty or does not have the expected form, no
conversion is performed and the value of nptr is stored in the object
pointed to by endptr, provided endptr is not a null pointer.

Availability: All devices.

Requires: #INCLUDE <stdlib.h>
signed long result;
char str[9]="123hello";

* .

Examples: char *ptr;

Example Files:

Also See:

result=strtol (str, &ptr, 10);
//result is 123 and ptr is "hello"

None

strtod(), strtoul()

strtoul()

Syntax:

result=strtoul(nptr,endptr, base)

376

../HelpFile/CCSC/javascript:shortcutlink.click()

Built-in Functions

Parameters:

Returns:

Function:

Availability:

Requires:

Examples:

Example Files:

nptr and endptr are strings pointers and base is an integer 2-36.

result is an unsigned long int.
returns the converted value in result, if any. If no conversion could be
performed, zero is returned.

The strtoul function converts the initial portion of the string pointed to
by nptr to a long int representation in some radix determined by the
value of base. The part of the string after conversion is stored in the
object pointed to endptr, provided that endptr is not a null pointer. If
nptr is empty or does not have the expected form, no conversion is
performed and the value of nptr is stored in the object pointed to by
endptr, provided endptr is not a null pointer.

All devices.

STDLIB.H must be included

long result;

char str[9]="123hello";

char *ptr;
result=strtoul (str, &ptr,10);
//result is 123 and ptr is "hello"

None

strtol(), strtod()

Also See:

swap()

Syntax: swap (Ilvalue)

Parameters: Ivalue is a byte variable

. undefined - WARNING: this function does not return the result

Returns:

Function: Swaps the upper nibble with the lower nibble of the specified
byte. This is the same as:
byte = (byte << 4) | (byte >> 4);

Availability: All devices.

377

CCS C Compiler

Requires:

Examples:

Example Files:

Nothing
x=0x45;

swap (x) ;
//%x now is 0x54

None

rotate right(), rotate left()

Also See:
tolower() toupper()
Syntax: result = tolower (cvalue)
result =toupper (cvalue)
Parameters: cvalue is a character
Returns: An 8 bit character
Function: These functions change the case of letters in the alphabet.
TOLOWER(X) will return 'a"..'z' for X in 'A'.."Z" and all other characters
are unchanged. TOUPPER(X) will return 'A'.."Z' for X in 'a'..'z' and all
other characters are unchanged.
Availability: All devices.
Requires: Nothing
switch(toupper (getc())) {
case 'R' : read cmd(); break;
. case 'W' : write cmd(); break;
Exanuﬂes. case 'Q' : done=TRUE; break;
}
Example Files: ex_str.c
None

Also See:

378

../HelpFile/CCSC/javascript:shortcutlink.click()

Built-in Functions

touchpad_getc()

Syntax: input = TOUCHPAD_GETC();
Parameters: None
Returns: char (returns corresponding ASCII number is “input” declared as int)
Function: Actively waits for firmware to signal that a pre-declared Capacitive
Sensing Module (CSM) or charge time measurement unit (CTMU) pin
is active, then stores the pre-declared character value of that pin in
“input”.
Note: Until a CSM or CTMU pin is read by firmware as active, this
instruction will cause the microcontroller to stall.
Availability: All PIC's with a CSM or CTMU Module
Requires: #USE TOUCHPAD (options)
//When the pad connected to PIN B0 is activated, store
the letter 'A'
#USE TOUCHPAD (PINiBO:'A')
void main (void) {
char c;
enable interrupts (GLOBAL) ;
. c = TOUCHPAD GETC () ;
Examples: //will wait until one of declared pins is

Example Files:

Also See:

detected
//if PIN BO is pressed, c will get value 'A'
}

None

#USE TOUCHPAD, touchpad_state()

touchpad_hit()

Syntax:

value = TOUCHPAD_HIT()

Parameters:

None

379

CCS C Compiler

Returns:
Function:

Availability:
Requires:

Examples:

Example Files:

Also See:

TRUE or FALSE

Returns TRUE if a Capacitive Sensing Module (CSM) or Charge
Time Measurement Unit (CTMU) key has been pressed. If TRUE,
then a call to touchpad_getc() will not cause the program to wait for a
key press.

All PIC's with a CSM or CTMU Module

#USE TOUCHPAD (options)

// When the pad connected to PIN BO is activated, store
the letter 'A'

#USE TOUCHPAD (PIN_BO:'A')
void main (void) {
char c;
enable interrupts (GLOBAL) ;

while (TRUE) {
if (TOUCHPAD HIT())
//wait until key on PIN BO is pressed

c = TOUCHPAD GETC(); //get key that was
pressed

} //c will get value 'A'
}
None

#USE TOUCHPAD (), touchpad_state(), touchpad_getc()

touchpad_state()

Syntax: TOUCHPAD_STATE (state);

Parameters: state is a literal 0, 1, or 2.

Returns: None

Function: Sets the current state of the touchpad connected to the Capacitive

Sensing Module (CSM). The state can be one of the following three
values:

0 : Normal state
1 : Calibrates, then enters normal state
2 : Test mode, data from each key is collected in the int16 array

380

Built-in Functions

Availability:
Requires:

Examples:

Example Files:

Also See:

TOUCHDATA

Note: If the state is set to 1 while a key is being pressed, the
touchpad will not calibrate properly.

All PIC's with a CSM Module
#USE TOUCHPAD (options)

#USE TOUCHPAD (THRESHOLD=5, PIN7D5=' 5', PIN7B0='C')
void main (void) {
char c;
TOUCHPAD STATE (1) ; //calibrates, then enters
normal state
enable interrupts (GLOBAL) ;
while (1) {
c = TOUCHPAD GETC() ;
//will wait until one of declared pins is

detected
}
//if PIN BO is pressed, c will get value
ot
} //1if PIN D5 is pressed, c will get value
|5| -
None

#USE TOUCHPAD, touchpad getc(), touchpad hit()

tx_buffer_available()

Syntax: value = tx_buffer_available([stream]);

Parameters: stream — optional parameter specifying the stream
defined in #USE RS232.

Returns: Number of bytes that can still be put into transmit buffer

Function: Function to determine the number of bytes that can still be put into
transmit buffer before it overflows. Transmit buffer is implemented
has a circular buffer, so be sure to check to make sure there is room
for at least one more then what is actually needed.

Availability: All devices

381

CCS C Compiler

Requires:

Examples:

Example Files:

Also See:

#USE RS232

#USE7R8232(UARTI,BAUD=96OO,TRANSMITiBUFF
ER=50)
void main (void) {

unsigned int8 Count = 0;

while (TRUE) {
if (tx buffer available()>13)
printf ("/r/nCount=%3u", Count++)
}
}
None

USE RS232(), rev(), TX BUFFER FULL(),
RCV_BUFFER BYTES(), GET(), PUTC() ,PRINTF(),
SETUP_UART(), PUTC SEND()

tx_buffer_bytes()

Syntax: value = tx_buffer_bytes([stream]);

Parameters: stream — optional parameter specifying the stream
defined in #USE RS232.

Returns: Number of bytes in transmit buffer that still need to be sent.

Function: Function to determine the number of bytes in transmit buffer that still
need to be sent.

Availability: All devices

Requires: #USE RS232
#USE_RS232(UART1,BAUD=9600,TRANSMIT_BUFF
ER=50)
void main(void) {

Examples: char string[] = “Hello”;

Example Files:

Also See:

if(tx_buffer_bytes() <= 45)
printf(“%s”,string);
}

None

USE_RS232(), RCV_BUFFER FULL(), TX BUFFER_FULL(),
RCV_BUFFER BYTES(), GET(), PUTC() ,PRINTF(),

382

Built-in Functions

SETUP_UART(), PUTC_SEND()

tx_buffer_full()

Syntax: value = tx_buffer_full([stream])

Parameters: stream — optional parameter specifying the stream
defined in #USE RS232

Returns: TRUE if transmit buffer is full, FALSE otherwise.

Function: Function to determine if there is room in transmit buffer for another
character.

Availability: All devices

Requires: #USE RS232

#USE_RS232(UART1,BAUD=9600,TRANSMIT_BUFF

ER=50)

void main(void) {

Examples: char c;
if(1tx_buffer_full())
putc(c);

}

Example Files: None

USE RS232(), RCV_BUFFER FULL(), TX BUFFER FULL().,
Also See: RCV_BUFFER BYTES(), GETC(), PUTC(), PRINTE(),
SETUP_UART()., PUTC_SEND()

va_arg()
Syntax: va_arg(argptr, type)
Parameters: argptr is a special argument pointer of type va_list
type — This is data type like int or char.
Returns: The first call to va_arg after va_start return the value of the

383

CCS C Compiler

Function:

Availability:
Requires:

Examples:

Example Files:

parameters after that specified by the last parameter. Successive
invocations return the values of the remaining arguments in
succession.

The function will return the next argument every time it is called.
All devices.

#INCLUDE <stdarg.h>

int foo(int num, ...)
{
int sum = 0;
int i;
va list argptr; // create special argument pointer
va_start (argptr,num); // initialize argptr
for (i=0; i<num; i++)
sum = sum + va_arg(argptr, int);
va_end(argptr); // end variable processing
return sum;

}
None

nargs(), va_end(), va_start()

Also See:

va_end()

Syntax: va_end(argptr)

Parameters: argptr is a special argument pointer of type va_list.

Returns: None

Function: A call to the macro will end variable processing. This will facillitate a
normal return from the function whose variable argument list was
referred to by the expansion of va_start().

Availability: All devices.

Requires: #INCLUDE <stdarg.h>
int foo(int num, ...)

Examples: {

int sum = 0;

384

Built-in Functions

int 1i;
va_list argptr; // create special argument pointer
va_ start (argptr,num); // initialize argptr

for (i=0; i<num; 1i++)

sum = sum + va_arg(argptr, int);
va_end(argptr); // end variable processing
return sum;

}

Example Files: None
Also See: nargs(), va_start(), va_arg()
va_start
Syntax: va_start(argptr, variable)
Parameters: argptr is a special argument pointer of type va_list
variable — The second parameter to va_start() is the name of the
last parameter before the variable-argument list.
Returns: None
Function: The function will initialize the argptr using a call to the macro
va_start().
Availability: All devices.
Requires: #INCLUDE <stdarg.h>
int foo (int num, ...)
{
int sum = 0;
int i;
va_list argptr; // create special argument pointer
Examples: va_start (argptr,num); // initialize argptr
for (i=0; i<num; 1i++)
sum = sum + va arg(argptr, int);
va_end(argptr); // end variable processing
return sum;
}
Example Files: None
Also See: nargs(), va_start(), va_arg()

385

CCS C Compiler

write_bank()

Syntax: write_bank (bank, offset, value)

Parameters: bank is the physical RAM bank 1-3 (depending on the device)
offset is the offset into user RAM for that bank (starts at 0)
value is the 8 bit data to write

Returns: undefined

Function: Write a data byte to the user RAM area of the specified memory
bank. This function may be used on some devices where full RAM
access by auto variables is not efficient. For example on the
PIC16C57 chip setting the pointer size to 5 bits will generate the
most efficient ROM code however auto variables can not be above
1Fh. Instead of going to 8 bit pointers you can save ROM by using
this function to write to the hard to reach banks. In this case the
bank may be 1-3 and the offset may be 0-15.
All devices but only useful on PCB parts with memory over 1Fh and

Availability: PCM parts with memory over FFh.

Requires: Nothing
i=0; // Uses bank 1 as a RS232 buffer
do {

Examples: c-getel) ;

Example Files:

Also See:

write bank(l,i++,c);
} while (c!=0x13);

eX_psp.c

See the "Common Questions and Answers" section for more
information.

write_configuration_memory()

Syntax:

write_configuration_memory ([offset], dataptr,count)

Parameters:

dataptr: pointer to one or more bytes
count: a 8 hit integer

386

../HelpFile/CCSC/javascript:shortcutlink.click()

Built-in Functions

Returns:

Function:

Availability:
Requires:

Examples:

Example Files:

Also See:

offset is an optional parameter specifying the offset into
configuration memory to start writing to, offset defaults to zero if not
used.

undefined

For PIC18 devices-Erases all fuses and writes count bytes from the
dataptr to the configuration memory.

For Enhanced16 devices - erases and write User ID memory.

All PIC18 Flash and Enhanced16 devices

Nothing

int datafl6];
write configuration memory (data, 6)

None

write_program_memory(), Configuration Memory Overview

write_eeprom()

Syntax: write_eeprom (address, value)

Parameters: address is a (8 bit or 16 bit depending on the part) int, the range is
device dependent
value is an 8 bit int

Returns: undefined

Function: Write a byte to the specified data EEPROM address. This function

may take several milliseconds to execute. This works only on
devices with EEPROM built into the core of the device.

For devices with external EEPROM or with a separate EEPROM in
the same package (like the 12CE671) see EX_EXTEE.c with
CE51X.c, CE61X.c or CE67X.c.

In order to allow interrupts to occur while using the write operation,
use the #DEVICE option WRITE_EEPROM = NOINT. This will allow
interrupts to occur while the write_eeprom() operations is polling the
done bit to check if the write operations has completed. Can be
used as long as no EEPROM operations are performed during an

387

CCS C Compiler

Availability:

Requires:

Examples:

Example Files:

Also See:

ISR.
This function is only available on devices with supporting hardware
on chip.

Nothing

#define LAST VOLUME 10 // Location in EEPROM

volume++;
write eeprom(LAST VOLUME,volume) ;

ex_intee.c, ex_extee.c, ce51x.c, ce62x.c, ce67x.c

read eeprom(), write_program_eeprom(), read program_eeprom(),
data Eeprom Overview

write_external_memory()

Syntax: write_external_memory(address, dataptr, count)
Parameters: address is 16 bits on PCM parts and 32 bits on PCH parts
dataptr is a pointer to one or more bytes
count is a 8 bit integer
Returns: undefined
Function: Writes count bytes to program memory from dataptr to address.
Unlike write_program_eeprom() and read_program_eeprom() this
function does not use any special EEPROM/FLASH write algorithm.
The data is simply copied from register address space to program
memory address space. This is useful for external RAM or to
implement an algorithm for external flash.
Availability: Only PCH devices.
Requires: Nothing
for (1=0x1000; i<=0x1fff;i++) {
value=read_adc();
write external memory (i, value, 2);
Examples: - N

Example Files:

delay ms (1000);
}

ex_load.c, loader.c

388

../HelpFile/CCSC/javascript:shortcutlink.click()
../HelpFile/CCSC/javascript:shortcutlink2.click()
../HelpFile/CCSC/javascript:shortcutlink3.click()
../HelpFile/CCSC/javascript:shortcutlink4.click()
../HelpFile/CCSC/javascript:shortcutlink5.click()
../HelpFile/CCSC/javascript:shortcutlink.click()
../HelpFile/CCSC/javascript:shortcutlink2.click()

Built-in Functions

write_program_eeprom(), erase_program eeprom(), Program
Eeprom Overview

Also See:

write_extended _ram()

Syntax: write_extended_ram (page,address,data,count);

Parameters: page - the page in extended RAM to write to
address — the address on the selected page to start writing to
data — pointer to the data to be written
count — the number of bytes to write (0-32768)

Returns: undefined
Function: To write data to the extended RAM of the PIC.
Availability: On devices with more then 30K of RAM.
Requires: Nothing
unsigned int8 datal[8]
{0x01,0x02,0x03,0x04,0x05,0x06,0x07,0x08};
Examples:
write extended ram(1l,0x0000,data,8);
Example Files: None
Also See: read extended ram(), Extended RAM Overview

write_program_eeprom()

Syntax: write_program_eeprom (address, data)

Parameters: address is 16 bits on PCM parts and 32 bits on PCH parts, data is
16 bits. The least significant bit should always be 0 in PCH.

Returns: undefined

Function: Writes to the specified program EEPROM area.
See our write_program_memory() for more information on this
function.

Availability: Only devices that allow writes to program memory.

389

CCS C Compiler

Requires:

Examples:
Example Files:

Also See:

Nothing
write program eeprom(0,0x2800) ; //disables program

ex_load.c, loader.c

read program_eeprom(), read eeprom(), write _eeprom(),
write_program_memory(), erase_program_eeprom(), Program

Eeprom Overview

write_program_memory/()

Syntax: write_program_memory(address, dataptr, count);

Parameters: address is 16 bits on PCM parts and 32 bits on PCH parts .
dataptr is a pointer to one or more bytes
count is a 8 bit integer on PIC16 and 16-bit for PIC18

Returns: undefined

Function: Writes count bytes to program memory from dataptr to address. This
function is most effective when count is a multiple of
FLASH_WRITE_SIZE. Whenever this function is about to write to a
location that is a multiple of FLASH_ERASE_SIZE then an erase is
performed on the whole block.

Availability: Only devices that allow writes to program memory.

Requires: Nothing
for (i=0%1000;i<=0x1fff;i++) {

value=read adc();
Exanuﬂes: write program memory (i, value, 2);

Example Files:

Also See:

Additional Notes:

delay ms (1000);
}

loader.c

write_program_eeprom , erase_program_eeprom , Program
Eeprom Overview

Clarification about the functions to write to program memory:

In order to get the desired results while using
write_program_memory(), the block of memory being written to

390

../HelpFile/CCSC/javascript:shortcutlink.click()
../HelpFile/CCSC/javascript:shortcutlink2.click()
../HelpFile/CCSC/javascript:shortcutlink.click()

Built-in Functions

needs to first be read in order to save any other variables currently
stored there, then erased to clear all values in the block before the
new values can be written. This is because the
write_program_memory() function does not save any values in
memory and will only erase the block if the first location is written to.
If this process is not followed, when new values are written to the
block, they will appear as garbage values.

For chips where
getenv(“FLASH_ERASE_SIZE”) > getenv(“FLASH_WRITE_SIZE”)

write_program_eeprom() - Writes 2 bytes, does not erase
(use erase_program_eeprom())

write_program_memory() - Writes any number of bytes, will
erase a block whenever the first (lowest) byte in a block is
written to. If the first address is not the start of a block that
block is not erased.

erase_program_eeprom() - Will erase a block. The lowest
address bits are not used.

For chips where
getenv(“FLASH_ERASE_SIZE”) = getenv(“FLASH_WRITE_SIZE”)

write_program_eeprom() - Writes 2 bytes, no erase is
needed.

write_program_memory() - Writes any number of bytes,
bytes outside the range of the write block are not changed.
No erase is needed.

erase_program_eeprom() - Not available

zdc_status()

Syntax: value=zcd_status()

Parameters:
value - the status of the ZCD module. The following defines are
made in the device's

Returns: header file and are as follows:

. ZCD_IS_SINKING
. ZCD IS_SOURCING

391

CCS C Compiler

Function: To determine if the Zero-Cross Detection (ZCD) module is currently
sinking or sourcing current.
If the ZCD module is setup to have the output polarity inverted, the
value return will be reversed.

All devices with a ZCD module.

Availability:

Examples: value=zcd status() :
Example Files: None

Also See: setup_zcd()

392

STANDARD C INCLUDE FILES

errno.h

errno.h

EDOM Domain error value

ERANGE Range error value

errno error value

float.h

float.h

FLT_RADIX: Radix of the exponent representation

FLT_MANT_DIG: Number of base digits in the floating point significant

FLT_DIG: Number of decimal digits, g, such that any floating point number
with g decimal digits can be rounded into a floating point number
with p radix b digits and back again without change to the q decimal
digits.

FLT MIN_EXP: Minimum negative integer such that FLT_RADIX raised to that

FLT_MIN_10_EXP:

FLT_MAX_EXP:

FLT_MAX_10_EXP:

FLT_MAX:
FLT_EPSILON:

FLT_MIN:

DBL_MANT _DIG:
DBL_DIG:

DBL_MIN_EXP:

power minus 1 is a normalized floating-point number.

Minimum negative integer such that 10 raised to that power is in
the range of normalized floating-point numbers.

Maximum negative integer such that FLT_RADIX raised to that
power minus 1 is a representable finite floating-point number.
Maximum negative integer such that 10 raised to that power is in
the range representable finite floating-point numbers.

Maximum representable finite floating point number.

The difference between 1 and the least value greater than 1 that is
representable in the given floating point type.

Minimum normalized positive floating point number

Number of base digits in the floating point significant

Number of decimal digits, g, such that any floating point number
with g decimal digits can be rounded into a floating point number
with p radix b digits and back again without change to the q decimal
digits.

Minimum negative integer such that FLT_RADIX raised to that
power minus 1 is a normalized floating point number.

393

CCS C Compiler
DBL_MIN_10_EXP:

DBL_MAX_EXP:
DBL_MAX_10_EXP:

DBL_MAX:
DBL_EPSILON:

DBL_MIN:

LDBL_MANT DIG:
LDBL_DIG:

LDBL_MIN_EXP:
LDBL_MIN_10_EXP:

LDBL_MAX_EXP:

LDBL_MAX_10_EXP:

LDBL_MAX:
LDBL_EPSILON:

Minimum negative integer such that 10 raised to that power is in
the range of normalized floating point numbers.

Maximum negative integer such that FLT_RADIX raised to that
power minus 1 is a representable finite floating point number.
Maximum negative integer such that 10 raised to that power is in
the range of representable finite floating point numbers.

Maximum representable finite floating point number.

The difference between 1 and the least value greater than 1 that is
representable in the given floating point type.

Minimum normalized positive floating point number.

Number of base digits in the floating point significant

Number of decimal digits, g, such that any floating point number
with g decimal digits can be rounded into a floating point number
with p radix b digits and back again without change to the g decimal
digits.

Minimum negative integer such that FLT_RADIX raised to that
power minus 1 is a normalized floating-point number.

Minimum negative integer such that 10 raised to that power is in
the range of normalized floating-point numbers.

Maximum negative integer such that FLT_RADIX raised to that
power minus 1 is a representable finite floating-point number.
Maximum negative integer such that 10 raised to that power is in
the range of representable finite floating-point numbers.

Maximum representable finite floating point number.

The difference between 1 and the least value greater than 1 that is
representable in the given floating point type.

LDBL_MIN: Minimum normalized positive floating point number.
limits.h

limits.h

CHAR_BIT: Number of bits for the smallest object that is not a bit_field.
SCHAR_MIN: Minimum value for an object of type signed char
SCHAR_MAX: Maximum value for an object of type signed char
UCHAR_MAX: Maximum value for an object of type unsigned char
CHAR_MIN: Minimum value for an object of type char(unsigned)
CHAR_MAX: Maximum value for an object of type char(unsigned)
MB_LEN_MAX: Maximum number of bytes in a multibyte character.
SHRT_MIN: Minimum value for an object of type short int
SHRT_MAX: Maximum value for an object of type short int
USHRT_MAX: Maximum value for an object of type unsigned short int
INT_MIN: Minimum value for an object of type signed int
INT_MAX: Maximum value for an object of type signed int

394

Standard C Include Files

UINT_MAX: Maximum value for an object of type unsigned int
LONG_MIN: Minimum value for an object of type signed long int
LONG_MAX: Maximum value for an object of type signed long int
ULONG MAX: Maximum value for an object of type unsigned long int
locale.h
locale.h
locale.h (Localization not supported)
Iconv localization structure
SETLOCALE() returns null
LOCALCONV() returns clocale
setimp.h

setjmp.h

jmp_buf: An array used by the following functions

setjmp: Marks a return point for the next longjmp

longjmp: Jumps to the last marked point

stddef.h

stddef.h

ptrdiff_t: The basic type of a pointer

size_t: The type of the sizeof operator (int)

wchar_t The type of the largest character set supported (char) (8 bits)
NULL A null pointer (0)

stdio.h

395

CCS C Compiler

stdio.h

stderr The standard error s stream (USE RS232 specified as stream or
the first USE RS232)

stdout The standard output stream (USE RS232 specified as stream last
USE RS232)

stdin The standard input s stream (USE RS232 specified as stream last
USE RS232)

stdlib.h

stdlib.h

div_t structure type that contains two signed integers (quot and rem).

Idiv_t structure type that contains two signed longs (quot and rem

EXIT_FAILURE returns 1

EXIT_SUCCESS returns 0

RAND_MAX-

MBCUR_MAX- 1

SYSTEM() Returns 0(not supported)

string functions:

Multibyte character and

Multibyte characters not supported

MBLEN() Returns the length of the string.
MBTOWC() Returns 1.

\WCTOMB() Returns 1.

MBSTOWCS() Returns length of string.
WBSTOMBS() Returns length of string.

Stdlib.h functions included just for compliance with ANSI C.

396

SOFTWARE LICENSE
AGREEMENT

Carefully read this Agreement prior to opening this package. By
opening this package, you agree to abide by the following
provisions.

If you choose not to accept these provisions, promptly return the
unopened package for a refund.

All materials supplied herein are owned by Custom Computer Services,
Inc. (“CCS”) and is protected by copyright law and international copyright
treaty. Software shall include, but not limited to, associated media,
printed materials, and electronic documentation.

These license terms are an agreement between You (“Licensee”) and
CCS for use of the Software (“Software”). By installation, copy,
download, or otherwise use of the Software, you agree to be bound by all
the provisions of this License Agreement.

1. LICENSE - CCS grants Licensee a license to use in one of the two
following options:
1) Software may be used solely by single-user on multiple computer
systems;
2) Software may be installed on single-computer system for use by
multiple users. Use of Software by additional users or on a network
requires payment of additional fees.

Licensee may transfer the Software and license to a third party; and
such third party will be held to the terms of this Agreement. All copies
of Software must be transferred to the third party or destroyed.
Written notification must be sent to CCS for the transfer to be valid.

2. APPLICATIONS SOFTWARE - Use of this Software and derivative
programs created by Licensee shall be identified as Applications
Software, are not subject to this Agreement. Royalties are not be
associated with derivative programs.

397

CCS C Compiler

3.

398

WARRANTY - CCS warrants the media to be free from defects in
material and workmanship, and that the Software will substantially
conform to the related documentation for a period of thirty (30) days
after the date of purchase. CCS does not warrant that the Software
will be free from error or will meet your specific requirements. If a
breach in warranty has occurred, CCS will refund the purchase price
or substitution of Software without the defect.

LIMITATION OF LIABILITY AND DISCLAIMER OF WARRANTIES —
CCS and its suppliers disclaim any expressed warranties (other than
the warranty contained in Section 3 herein), all implied warranties,
including, but not limited to, the implied warranties of merchantability,
of satisfactory quality, and of fitness for a particular purpose,
regarding the Software.

Neither CCS, nor its suppliers, will be liable for personal injury, or any
incidental, special, indirect or consequential damages whatsoever,
including, without limitation, damages for loss of profits, loss of data,
business interruption, or any other commercial damages or losses,
arising out of or related to your use or inability to use the Software.

Licensee is responsible for determining whether Software is suitable
for Applications.

©1994-2016 Custom Computer Services, Inc.
ALL RIGHTS RESERVED WORLDWIDE
PO BOX 2452
BROOKFIELD, WI 53008 U.S.A.

