DEMO CIRCUIT 1106 QUICK START GUIDE

## DESCRIPTIOn

Demonstration circuit 1106 is a 1.5A Buck Converter, 1.5A Boost Converter, and LDO Controller featuring the LT3570. The Buck is designed to convert a 4 V to 36 V source to 3.3 V at 1 A . The LDO is powered from the output of the Buck and converts it to 2.5 V at 100 mA . The Boost converts a $3.3 \mathrm{~V}-10 \mathrm{~V}$ source to 12 V at 275 mA . DC1106 was designed to switch at 500 KHz .
In the DC1106 default setting, the Buck and Boost converters run from separate sources to allow for full input variation for the Buck. To facilitate other input options, there are two placeholders on the back of the board, R1 and R2. Installing a jumper at R1, allows the Boost output to power the Buck. Installing a jumper at R2, allows both, the Boost and the Buck to be powered from the same source.

Since the input to the Buck powers the internal oscillator, it needs to be on for the Boost to switch.

The LT3570 features programmable switching frequency, synchronization, external compensation, independent soft-start for each converter. This circuit is intended for space-conscious applications such as Cable Satellite Settop Boxes, Automotive Systems, Telecom Systems "Dying Gasp" Systems and TFT LCD Displays.
The LT3570 datasheet gives a complete description of the part, operation and application information. The datasheet must be read in conjunction with this quick start guide for working on or modifying the demo circuit 1106.

Design files for this circuit board are available. Call the LTC factory.
$\boldsymbol{\mathcal { C }}$, LTC, LTM, LT are registered trademarks of Linear Technology Corporation.

PGRFORMAOCE SUMMARY FOR DC1 106A Speciications are at $T A=25^{\circ} \mathrm{C}$

| SYMBOL | PARAMETER | CONDITIONS | MIN | TYP | MAX | UNITS |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| VIN BUCK | Input Supply Range |  | 4 |  | 36 | V |
| VIN BOOST | Input Supply Range |  | 3.3 |  | 10 | V |
| VOUT BUCK | Output Voltage Range | $\mathrm{V}_{\text {IN }}=4 \mathrm{~V}-36 \mathrm{~V}, \mathrm{I}_{\text {LOAD }}=1 \mathrm{~A}$ | 3.2 | 3.3 | 3.4 | V |
| VOUT BOOST | Output Voltage Range | $\mathrm{V}_{\text {IN }}=3.3 \mathrm{~V}-10 \mathrm{~V}, \mathrm{I}_{\text {LOAD }}=275 \mathrm{~mA}$ | 11.64 | 12 | 12.36 | V |
| VOUT LDO | Output Voltage Range | $\mathrm{I}_{\text {LOAD }}=100 \mathrm{~mA}$ | 2.425 | 2.5 | 2.575 | V |
| 3.3V RIPPLE |  | $\mathrm{V}_{\text {IN }}=4 \mathrm{~V}, \mathrm{I}_{\text {LOAD }}=1 \mathrm{~A}$ |  | 20 |  | mV |
| 12V RIPPLE |  | $\mathrm{V}_{\text {IN }}=12 \mathrm{~V}, \mathrm{I}_{\text {LOAD }}=275 \mathrm{~mA}$ |  | 150 |  | mV |
| 2.5V RIPPLE |  | $\mathrm{I}_{\text {LOAD }}=100 \mathrm{~mA}$ |  | 10 |  | mV |
| EFFICIENCY |  | Both input sources at 5V, Loads: $3.3 \mathrm{~V}=1 \mathrm{~A}, 12 \mathrm{~V}$ $=275 \mathrm{~mA}, 2.5 \mathrm{~V}=100 \mathrm{~mA}$ |  | 87 |  | \% |

## QUICK START PROCEDURE

Demonstration circuit 1106 is easy to set up to evaluate the performance of the LT3570. Refer to Figure 1 for proper measurement equipment setup and follow the procedure below:
NOTE. When measuring the input or output voltage ripple, care must be taken to avoid a long ground lead on the oscilloscope probe. Measure the input or output voltage ripple by touching the probe tip directly across the Vin or Vout and GND terminals. See Figure 2 for proper scope probe technique.

1. Place jumpers in the following positions:

JP1, JP2, JP3 On
2. With power off, connect the input power supplies to Vin and GND.
3. Turn on the power at the input.

Check for the proper output voltages. $3.3 \mathrm{~V}=3.2$ to $3.4,12 \mathrm{Vout}=11.64 \mathrm{~V}$ to 12.36 V , and $2.5 \mathrm{~V}=2.425 \mathrm{~V}$ to 2.575 V .

NOTE. If there is no output, temporarily disconnect the load to make sure that the load is not set too high.
4. Once the proper output voltages are established, adjust the loads within the operating range and observe the output voltage regulation, ripple voltage, efficiency and other parameters.


Figure 1. Proper Measurement Equipment Setup


Figure 2. Measuring Input or Output Ripple


Figure 3. Schematic

