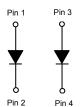


MBR200100CTS

Silicon Power Schottky Diode


 $V_{RRM} = 100 V$ $I_F = 200 A$

Features

• High Surge Capability

Package

SOT - 227

Maximum Ratings at T_j = 125 °C, unless otherwise specified

Parameter	Symbol	Conditions	Values	Unit
Repetitive peak reverse voltage	V_{RRM}		100	V
RMS reverse voltage	V_{RMS}		70	V
DC blocking voltage	V_{DC}		100	V
Continuous forward current	l _F	T _C ≤ 85 °C	200	Α
Operating temperature	T _j		-40 to 175	°C
Storage temperature	T _{stg}		-40 to 175	°C

Electrical Characteristics at T_j = 125 °C, unless otherwise specified (Per Leg)

Parameter	Symbol	Conditions	Values		Unit	
Farameter		Conditions	min.	typ.	max.	Onit
Diada farward valtage		$I_F = 100 \text{ A}, T_j = 25 ^{\circ}\text{C}$		0.9	0.95	
Diode forward voltage	V_{F}	$I_F = 100 \text{ A}, T_j = 125 ^{\circ}\text{C}$		8.0		V
Reverse current	1	$V_R = 80 \text{ V}, T_j = 25 ^{\circ}\text{C}$		3.75	10	^
Neverse current	IR	$V_R = 80 \text{ V}, T_j = 125 ^{\circ}\text{C}$		1830	5000	μΑ
		$V_R = 1 \text{ V, f} = 1 \text{ MHz, T}_j = 25 \text{ °C}$		4960		
Total capacitance	С	$V_R = 50 \text{ V}, f = 1 \text{ MHz}, T_j = 25 ^{\circ}\text{C}$		854		pF
		$V_R = 100 \text{ V}, f = 1 \text{ MHz}, T_j = 25 ^{\circ}\text{C}$		617		

Thermal Characteristics

Thermal resistance, junction - case	R _{thJC}	1.87	°C/W

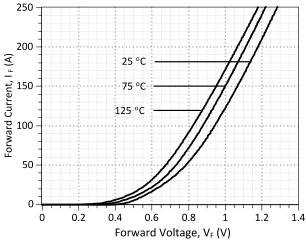


Figure 1: Typical Forward Characteristics(Per Leg)

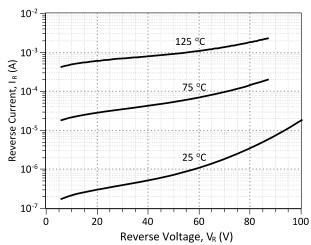


Figure 2: Typical Reverse Characteristics(Per Leg)

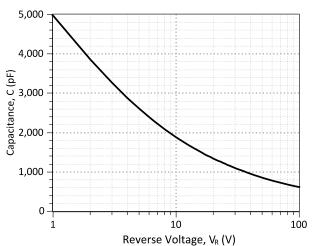
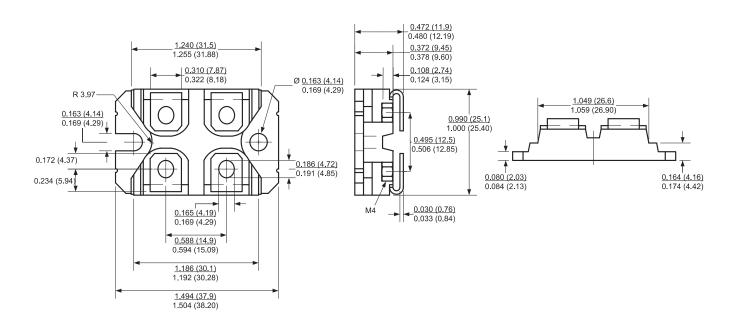



Figure 3: Typical Junction Capacitance vs Reverse Voltage Characteristics(Per Leg)

Package Dimensions:

SOT-227

PACKAGE OUTLINE

NOTE

- 1. CONTROLLED DIMENSION IS INCH. DIMENSION IN BRACKET IS MILLIMETER.
- 2. DIMENSIONS DO NOT INCLUDE END FLASH, MOLD FLASH, MATERIAL PROTRUSIONS

Revision History					
Date	Revision	Comments	Supersedes		
2012/03/12	0	Initial release			

Published by GeneSiC Semiconductor, Inc. 43670 Trade Center Place Suite 155 Dulles, VA 20166

GeneSiC Semiconductor, Inc. reserves right to make changes to the product specifications and data in this document without notice.

GeneSiC disclaims all and any warranty and liability arising out of use or application of any product. No license, express or implied to any intellectual property rights is granted by this document.

Unless otherwise expressly indicated, GeneSiC products are not designed, tested or authorized for use in life-saving, medical, aircraft navigation, communication, air traffic control and weapons systems, nor in applications where their failure may result in death, personal injury and/or property damage.