
CoreFFT Fast Fourier Transform

Product Summary

Intended Use
• Fast Fourier Transform (FFT) Function for Actel

FPGAs

Key Features
• Forward and Inverse 32-, 64-, 128-, 256-, 512-,

1,024-, and 2,048-Point Complex FFT

• Decimation–In-Time (DIT) Radix-2 Implementation
Optimized for Actel FPGAs

• Selection of Unconditional or Conditional Block
Floating-Point Scaling

• Embedded RAM-Block-Based Twiddle Factor
Generator

• 8- to 16-Bit Configurable Input/Output Data and
Twiddle Coefficients Precision

• Naturally Ordered Input and Output Data

• Two’s-Complement Fixed-Point Arithmetic

• Built-In Memory Buffers

• CoreFFT Provides Register Transfer Level (RTL)
Code and a Behavioral Testbench

Targeted Devices
• ProASIC®3/E

• ProASICPLUS®

• Axcelerator®

• RTAX-S

Core Deliverables
• Full Version

– CoreFFT RTL Generator; Generates User-
Defined FFT Model and Test Harness; Fully
Supported in Actel Libero® Integrated Design
Environment (IDE)

• Evaluation Version

– Supports FFT Engine and Test Harness
Generation with Limited Parameters; Fully
Supported in Actel Libero IDE

Synthesis and Simulation Support
• Actel Libero IDE

• Synthesis: Synplicity,® Synopsys® (Design Compiler /
FPGA Compiler), Exemplar™

• Simulation: OVI-Compliant Verilog Simulators and
Vital-Compliant VHDL Simulators

General Description
CoreFFT is an RTL generator that produces an Actel
FPGA–optimized FFT engine. The resulting module
computes 32-, 64-, 128-, 256-, 512-, 1,024-, or 2,048-point
complex forward or inverse decimation-in-time (DIT)
FFTs. The input and output data is represented as bb-bit
words comprising b-bit real and imaginary parts
(bb = b + b; b = 8 to 16 bits). Both the real and imaginary
parts of the input and output data are two’s-
complement numbers. The FFT module contains all the
necessary memory buffers and butterfly and control
logic, as well as a twiddle factor generator. A dual input
buffer and a single output buffer support simultaneous
input of the new data samples with FFT computation and
result output. The module processes frames (bursts) of
data with a frame size equal to the transform size of N
words. The FFT computational process occurs in a

Contents

General Description ... 1
CoreFFT Device Requirements 3
Architecture .. 4
Buffering Scheme ... 5
FFT Computation .. 5
Finite Word Length Considerations 6
CoreFFT Generator Parameters 7
I/O Signal Description .. 8
I/O Interface and Timing .. 9
References .. 11
A Sample Configuration File 11
Ordering Information .. 11
Appendix I: Fast Fourier Transform 12
List of Changes ... 14
Datasheet Categories ... 14
May 2007 v4.0 1
© 2007 Actel Corporation

CoreFFT Fast Fourier Transform
sequence of stages with the final result obtained at the
last computational stage. As soon as a final output vector
is ready, the FFT module puts out an N-word frame of FFT
results.

An FFT-based system (Figure 1) consists of the following:

• A host presenting data to the FFT module to be
processed

• The FFT module

• A host accepting processed data

Note: Signals shown in parentheses are optional. The
host may use/generate these optional signals if required
by the application.

A negative nreset signal resets the FFT module. After
reset (input nreset taken HIGH), the module enters an
initialization state where internal RAM-based lookup
tables (LUTs) are initialized. Once initialization is
complete, the CoreFFT module automatically switches to
a ready state, prepared to receive data samples to be
processed. The module input start can be used to bring
the module to the ready state at any time after
initialization.

Note: The CoreFFT module will discard data collected in
its input and output buffers when start is taken HIGH by
the host.

The data-source host supplies the FFT engine with the
data to be transformed. Every complex input data
sample (i.e., a pair of b-bit imaginary and real words) is
accompanied with a validity bit. Upon receiving the
validity bit, the module assumes a valid complex data
sample is present on both b-bit input data busses.

Once the input data buffer is full, CoreFFT automatically
starts processing data stored in the buffer. At this time,
the host source should stop supplying the data to
CoreFFT, thus ending a current burst of input data. The
data-source host can do so either by counting the
number of input samples transferred or by monitoring

the state of the module signal, load. The CoreFFT
module drives load LOW once N samples (N is a
transform size) of the current burst are received into the
input buffer. As soon as the dual input buffer is ready for
the next data burst, load is asserted again. The module is
then ready to receive the next data burst to be
processed.

The data-source host can supply data at a maximum of
every clock cycle, or it may skip an arbitrary number of
"empty" clock periods. The host signals to the module
that no data is being transferred for a given clock cycle
by taking the validity bit d_valid LOW.

Figure 1 • FFT Module System Block Diagram

FFT Result
Validity Bit

(FFT Results
are available)

Global
Reset

HOST
Source of
Data to Be

FFTed

HOST
Receiver of
FFTed Data

FFT

(output of another
FFTed sample)

(Keep
Supplying Data)

Input Data
Validity Bit

(Start FFT)

Master Clock

d_im

d_re

d_valid

start

nreset

clk

read_y

load

y_im

y_re

y_valid

y_rdy

pong

b-Bit
Imaginary

Data

b-Bit
Real Data

b-Bit
Imaginary

Data

b-Bit
Real Data

(1-Bit Data ID)
2 v4.0

CoreFFT Fast Fourier Transform
Once the CoreFFT module has computed the FFT, the
results are written to the module’s output memory
buffer, and signal y_rdy is taken HIGH. Every output
sample is accompanied by a validity bit, y_valid, to
indicate to the receiving host that a valid output sample
is ready to be read from both b-bit output busses. The
receiving host can control the output sample rate using
the read_y input of the module. Asserting read_y
indicates to the FFT module that the receiving host is
ready to read samples. Deasserting read_y informs the
module that the host is not ready. Any unread samples
are held in the module’s output buffer until the host is
ready.

CoreFFT Device Requirements
Table 1 and Table 2 on page 4 provide typical utilization
and performance data for CoreFFT, which is
implemented in various Actel devices with the
configurations listed in Table 1 and Table 2 on page 4.
Device utilization and performance will vary depending
upon the FFT parameters used. The transform size
parameter N primarily impacts the number of RAM
blocks and the time required for transformation. "FFT
Computation" on page 5 provides more details on how
the FFT time depends on the transform size.

Table 1 • CoreFFT Device Utilization and Performance (bit width b = 16)

FPGA Family and
Device

FFT
Points

Cells or Tiles
Utilization

%
RAM

Blocks

Device
Speed
Grade

Clock
Rate,
MHz

FFT
Time,
µsecComb. Seq. Total

ProASIC3/E A3P1000 256 5,325 2,039 7,364 29.96% 14 –2 100 11

512 6,105 2,062 8,167 33.23% 14 –2 92 26

1,024 6,904 2,126 9,030 36.74% 28 –2 90 58

ProASICPLUS APA1000 256 6,904 2,026 8,930 15.90% 28 Std 59 19

512 6,901 2,019 8,920 15.80% 28 Std 62 39

1,024 9,091 2,431 11,522 20.50% 56 Std 62 85

Axcelerator AX1000 256 3,398 2,373 5,771 31.81% 7 –2 130 9

512 3,601 2,380 5,981 32.96% 14 –2 120 20

1,024 3,863 2,404 6,267 34.54% 28 –2 105 50

RTAX-S RTAX1000S 256 3,407 2,370 5,777 31.84% 7 –1 107 10

512 3,596 2,381 5,977 32.94% 14 –1 90 27

1,024 3,881 2,397 6,278 34.60% 28 –1 76 69

Notes:

1. Auto-scaling (block floating point) is enabled in all cases.

2. The above data were obtained by typical synthesis and place-and-route methods. Other core parameter settings can result in
different utilization and performance values.

3. All memory buffers are RAM-block-based.

4. Timing constraints supplied with CoreFFT were used.

5. Timing-driven layout options were used, effort level 3, with no multiple passes.
v4.0 3

CoreFFT Fast Fourier Transform
Architecture
The CoreFFT module input and output data are stored in
on-chip RAM blocks. The input memory buffer is also
used by the FFT processor as working memory where the
FFT engine stores results obtained at any intermediate
FFT stage. This dual memory usage is possible due to the
in-place FFT algorithm implemented by the core.

The twiddle factors (algorithm coefficients) used by the
FFT processor are generated by CoreFFT and stored in a
RAM-based LUT.

In addition to the FFT processor, the resulting module
also contains control logic and a host interface used for
entering data and reading the FFT results. See Figure 2.

Table 2 • CoreFFT Device Utilization and Performance (bit width b = 8)

FPGA Family and
Device

FFT
Points

Cells or Tiles
Utilization

%
RAM

Blocks

Device
Speed
Grade

Clock
Rate,
MHz

FFT
Time,
µsecComb Seq Total

ProASIC3/E A3P1000 256 2,126 968 3,094 12.6% 7 –2 114 10

512 2,283 989 3,272 13.3% 7 –2 122 20

1,024 2,509 1,026 3,535 14.4% 14 –2 118 44

ProASICPLUS APA1000 256 2,386 949 3,335 5.9% 14 Std 87 13

512 2,569 974 3,543 6.3% 14 Std 82 29

1,024 2,759 1,124 3,883 6.9% 28 Std 82 64

Axcelerator AX1000 256 1,317 958 2,275 12.5% 7 –2 170 7

512 1,435 986 2,421 13.3% 7 –2 159 15

1,024 1,620 1,016 2,636 14.5% 14 –2 137 38

RTAX-S RTAX1000S 256 1,317 958 2,275 12.5% 7 –1 132 8

512 1,435 986 2,421 13.3% 7 –1 116 21

1,024 1,611 1,027 2,638 14.5% 14 –1 101 52

Notes:

1. Auto-scaling (block floating point) is enabled in all cases.

2. The above data were obtained by typical synthesis and place-and-route methods. Other core parameter settings can result in
different utilization and performance values.

3. All memory buffers are RAM-block-based.

4. Timing constraints supplied with CoreFFT were used.

5. Timing-driven layout options were used, effort level 3, with no multiple passes.

Figure 2 • CoreFFT Architecture

Pong Buffer

Ping Buffer

Mem 0

Mem 1

Radix-2
Butterfly

Twiddle
LUT

Data Buffer

Mem 0

Mem 1

 Bit-Reversed
Write Addr

R
ea

d
 S

w
it

ch

W
ri

te
 S

w
it

ch

Complex
Input Data

Complex
FFT Output

P

Q

4 v4.0

CoreFFT Fast Fourier Transform
Buffering Scheme
The CoreFFT module has one radix-2 butterfly, two input
memory banks implementing a ping-pong input buffer,
and one output buffer (Figure 2 on page 4).

Both of the identical memory banks can store N complex
samples. Each bank consists of two memory blocks, each
of N / 2 complex words, so it can read/write two complex
samples per clock. Thus, the memory bandwidth is
(4 × b) bits per clock cycle. Internal logic controls the
ping-pong switching between the banks so a data-source
host only sees the buffer ready to accept new data. The
buffer not accepting data is used by the in-place FFT
engine as working memory.

This ping-pong buffering architecture increases the
efficiency of the FFT engine. While one of the two
identical ping-pong input banks is involved in current FFT
computation, the other is available for the downloading
of the next frame of input data. As a result, the FFT
engine does not sit idle waiting for fresh data to fill the
input buffer. From the data-source host standpoint, the
core is capable of receiving a data burst anywhere within
the FFT computational period. When the module has
finished processing the current data frame and the input
buffer bank has been filled with another data frame, the
memory ping-pong banks are swapped, and the data
load and computation continues on the alternate
memory banks.

The last stage of the FFT computation uses an out-of-
place scheme—the FFT final results are routed to the
output data buffer. The results appear at the FFT engine
output in bit-reversed order. A bit-reversed write address
is used when writing the results to the output buffer to
restore the data to normal read address order. The last
stage results remain valid until the FFT engine is ready to
store the results of the next data frame.

The CoreFFT generator also calculates the twiddle factors
required by the FFT algorithm. At power-up, the twiddle
factors generated are written to the twiddle factor
lookup table (Twiddle LUT).

FFT Computation
An FFT computational cycle starts when input data is
stored in the active ping-pong buffer bank and the FFT
engine has finished processing the previous N data
samples. Each memory bank comprises two bb-bit-wide
memories (Mem 0 and Mem 1), supplying a data
bandwidth of (4 × b) bits per clock cycle (two complex
samples per clock cycle). Even input samples Di (i = 0, 2, 4, …,
N –) are stored in Mem 0, odd samples in Mem 1.

The Read Switch function is used to rearrange the two
sample pairs read from the input bank to match the
input sample order required by the DIT FFT algorithm

tree. The switch output samples are then routed to the
butterfly P and Q inputs. Table 3 shows a 16-point FFT
example of how Read Switch rearranges sample indices
coming from the Mem 0 and Mem 1 of the input
memory bank.

Table 3 • Sample Indices before and after Read Switch for
16-Point FFT Example

Input From Output

Mem 0 Mem 1 P Q

Stage 1

14 15 7 15

6 7 6 14

12 13 5 13

4 5 4 12

10 11 3 11

2 3 2 10

8 9 1 9

0 1 0 8

Stage 2

14 15 11 15

10 11 10 14

12 13 9 13

8 9 8 12

6 7 3 7

2 3 2 6

4 5 1 5

0 1 0 4

Stage 3

14 15 13 15

12 13 12 14

10 11 9 11

8 9 8 10

6 7 5 7

4 5 4 6

2 3 1 3

0 1 0 2

Stage 4

14 15 14 15

12 13 12 13

10 11 10 11

8 9 8 9

6 7 6 7

4 5 4 5

2 3 2 3

0 1 0 1
v4.0 5

CoreFFT Fast Fourier Transform
The radix-2 butterfly processes the data according to the DIT algorithm,[1] one pair of samples per clock. The Write
Switch works similarly to the Read Switch, rearranging the butterfly results prior to being written back to the in-place
memory bank.

On the last stage of every FFT computational cycle, the results are written into the output memory buffer rather than
back to the in-place memory bank. Figure 3 shows the FFT computational sequence.

Every FFT stage takes

(N / 2 + L) clock cycles

EQ 1

to complete, where

The full FFT cycle takes

(N / 2 + L) log2 N clock cycles.

EQ 2

This time is available for the new frame of N data
samples to be loaded into the memory bank not involved
in the current FFT computation. To provide maximum FFT
engine utilization (no idle time, FFT engine full loading),
the minimal input sample rate that the host should
provide is

((N / 2 + L) log2 N) / N ≈ (log2 N) / 2 clock cycles

EQ 3

The host can read the output buffer during the first
log2 N – 1 stages of the next FFT computational cycle (the
last stage is used to write fresh FFT results). Therefore,

the minimal read sample rate to avoid FFT engine idle
time is

(N / 2 + L) (log2 N – 1) / N ≈ (log2 N – 1) / 2 clock cycles

EQ 4

As a result, the minimal input and output sample rates
required to avoid FFT engine idle time depend on the
transform size N (Table 4).

Finite Word Length
Considerations
The butterfly calculation involves complex multiplication,
addition, and subtraction. These operations can
potentially cause the butterfly data width to grow by
two bits from input to output.[1], [2] At every stage of the
in-place FFT algorithm, the butterfly takes two samples
out of the input buffer and returns two processed
samples to the same buffer location. Potentially,
returning samples may have a larger data width than the

Figure 3 • FFT Computational Sequence

...321
FFT Stages

FFT Cycle i

Ping bank is busy.

Pong bank is available for loading input data.

Available for reading results of cycle (i – 1)

Ping-Pong Input Buffer

Output Buffer

Accepts
FFT result

...321
FFT Stages

Pong bank is busy.

Ping bank is available for loading input data.

Ping-Pong Input Buffer

Output Buffer

Available for reading results of cycle i

FFT Cycle i + 1

log2Nlog2N

Accepts
FFT result

N / 2 = the number of butterflies to be
performed within a stage

L = an implementation-specific parameter
representing the aggregate latency of the
memory bank, switches, and butterfly. L is
much less than the number of butterflies
required (N / 2) and does not depend on
transform size N.

Table 4 • Minimal Input and Output Sample Rates

Transform Size
N, Points

Input Sample
Rate, Clock Cycles

Output Sample
Rate, Clock Cycles

256 4 3

512 4 4

1,024 5 4
6 v4.0

CoreFFT Fast Fourier Transform
samples picked from the memory. Precautions must be
taken to ensure that there are no data overflows.

To avoid risk of overflow, one of three methods can be
employed:

• Input data scaling

• Unconditional block floating-point scaling

• Conditional block floating-point scaling

One way to ensure that overflow never occurs is to
include enough extra sign bits, called guard bits, in the
FFT input data. Data can grow by a maximum factor of
2.4 from butterfly input to output (two bits of growth).
However, it is not possible for the data value to grow by
this maximum amount in two consecutive stages.

The number of guard bits necessary to compensate for
the maximum possible bit growth for an N-point FFT is

log2 N + 1

EQ 5

For example, each of the input samples of a 256-point
FFT should contain nine guard bits, leaving only seven
bits for actual data. Obviously, the data bit resolution is
greatly limited when using the input data scaling
technique.

Another way to compensate for bit growth is to scale the
butterfly outputs down by a factor of two after each
stage. Consequently, the final FFT results are scaled down
by a factor of 1 / N. This approach is called unconditional
block floating-point scaling. Initially, two guard bits are
included in the input data to accommodate the
maximum bit growth at the very first stage. In each
successive butterfly calculation, the data can grow into
these guard bits. To prevent overflow in successive
stages, the guard bits are replaced before the next stage
is executed by shifting the entire block of data (all results
of the current stage) one bit to the right. The input data
of an unconditional block floating-point FFT can have at
most 14 bits (1 sign bit and 13 magnitude bits). EQ 6

shows the total number of bits the data loses because of
bit shifting in the FFT calculation.

log2 N – 1 bits

EQ 6

Unconditional block floating-point scaling results in the
same number of bits lost as in input data scaling.
However, it produces more precise results, as the FFT
engine starts with more precise input data.

In conditional block floating-point scaling, data is shifted
only if bit growth actually occurs. If one or more
butterfly outputs grow, the entire block of data is shifted
to the right. The conditional block floating-point
monitor checks every butterfly output for growth. If
shifting is necessary, it is performed after the entire stage
is complete (at the input of the next stage butterfly). This
technique provides the least amount of distortion (noise)
caused by finite word length.

The CoreFFT module is configured to apply conditional
block floating-point scaling by default. In this mode, the
input data is checked as well and, if necessary,
downscaled by a factor of two prior to the first stage.

The user can optionally select one of the other two
scaling modes. To apply unconditional block floating-
point scaling, the CoreFFT configuration parameter scale
needs to be set to 1. To apply input data scaling, the
scale configuration parameter has to take the default
value of 0, and the FFT input data has to contain the
proper number of guard bits. Then the conditional block
floating-point scaling will take no effect.

CoreFFT Generator Parameters
CoreFFT generates RTL code for a few selectable FFT
cores that vary depending on parameters set by the user
when generating the module. The core generator
supports the variations specified in Table 5.

Table 5 • Core Generator Parameters

Parameter
Name Description Recommended Selection

inv Forward/inverse FFT 0 (FFT) / 1 (IFFT)

scale Unconditional block floating-point scaling 0 (conditional block floating-point) / 1 (unconditional block floating-point)

points Transform size 32, 64,128, 256, 512, 1024, 2048

bits FFT engine bit width 8 to 16

fpga_family FPGA family ax (Axcelerator, RTAX-S), apa (ProASICPLUS), pa3 (ProASIC3)

lang RTL code language vhdl, verilog
v4.0 7

CoreFFT Fast Fourier Transform
I/O Signal Description
Figure 4 shows the CoreFFT module pinout.

The CoreFFT module I/O signal functionality is listed in Table 6. It is assumed that the module has been configured to
compute an N-point FFT/IFFT.

Figure 4 • CoreFFT I/O Signals

Table 6 • I/O Signal Description

Signal Name Direction Description

clk Input System clock. Active rising edge.

nreset Input System asynchronous reset. Active low.

d_im[b – 1:0] Input Input imaginary data bus. The imaginary part of the input complex data should be placed on this bus. Bit
b – 1 is the MSB. Data are assumed to be presented in two’s-complement format. The imaginary and real
parts should be supplied simultaneously.

d_re[b – 1:0] Input Input real data bus. The real part of the input complex data should be placed on this bus. Bit b – 1 is the
MSB. Data are assumed to be presented in two’s-complement format. The imaginary and real parts
should be supplied simultaneously.

d_valid Input Input complex word valid. Active high. The bit accompanies valid input samples coming to input busses
d_im and d_re. At any system clock interval where d_valid is active, input busses d_im and d_re are
considered to present another input complex sample.

load Output The FFT module input buffer accepts data. Active high. The signal is active when the input buffer (either
of two banks) is ready to accept data. The signal stays active until the buffer is full.

start Input FFT start signal. Active high. start is asserted to begin the transform processing or to return the module to
the initial ready state.

y_rdy Output FFT results ready. Active high. The signal goes active when the FFT results are ready for the host to read. It
stays HIGH during host read.

y_im[b – 1:0] Output Output imaginary data bus. The imaginary part of the output complex data appears on this bus. Bit b – 1
is the MSB. Data are presented in two’s-complement format. The imaginary and real parts appear
simultaneously.

y_re[b – 1:0] Output Output real data bus. The real part of the output complex data appears on this bus. Bit b – 1 is the MSB.
Data are presented in two’s-complement format. The imaginary and real parts appear simultaneously.

d_im

d_re

d_valid

start

read_y

nreset

clk

load

pong

y_im

y_re

y_valid

y_rdy

FFT
8 v4.0

CoreFFT Fast Fourier Transform
I/O Interface and Timing

Resetting the Module
Upon reset, the module returns to its initial state with
input and output buffer pointers reset to zero. The input
buffer is now ready to accept a new data frame; signal
load is asserted, and signals y_rdy and y_valid are
deasserted. Both nreset and start reset the module.

Loading Input Data
Input data can be loaded once the signal load is
asserted; otherwise, the module ignores any activity on
the data loading pins. When the host detects an active
load signal, it may begin writing data via the b-bit
busses d_im and d_re. Every valid complex sample must
be accompanied by an active d_valid signal (Figure 5 on
page 10). The module samples d_valid at each rising
edge of the system clock. Once an active d_valid signal is
detected, the core assumes a new complex sample has
been written to the input busses. The module then
writes the new sample to the input buffer. By the next
system clock edge, the module is ready to accept another
input sample. The host can control the input sample rate
via d_valid. Once the module has received N complex
samples, the input buffer is now full, and the module
deasserts the signal load.

Reading Output Data
Once the FFT engine completes another FFT
computational cycle, it asserts the y_rdy signal. The FFT
results are now available for the host in the output

buffer. The CoreFFT module puts out the post-processed
complex samples on the two b-bit busses, y_im and y_re.
Every valid complex sample is accompanied by a y_valid
bit. In the basic mode where the host does not control
the FFT output data rate (signal read_y remains
permanently active), all N post-processed complex
samples from a single burst are available consecutively at
each rising system clock edge (Figure 6 on page 10).
During this mode, y_valid remains valid for N system
clock cycles.

The host can control the FFT output sample rate via the
read_y signal. The input read_y acts similarly to an
output clock enable signal: when held HIGH, the module
will continue generating FFT results at each clock edge;
when held LOW, the module will pause in generating.

An example of a controlled output rate mode is depicted
in Figure 7 on page 10. Every new output sample is valid
for two system clock cycles, as read_y is asserted only
every other clock cycle. (Note that there is latency of one
clock cycle between the signal read_y and a valid sample
output).

The CoreFFT module design does not place any
restrictions on the duty cycle of the read_y signal.
However, for the FFT engine to operate at maximum
efficiency (i.e., no idle time), the post-processed results
must be read out of the output buffer before the engine
needs to write the results of the next data frame (this
time is marked as Accept FFT Result in Figure 3 on
page 6). Table 4 on page 6 shows the minimal output
reading rate that does not impact the efficient use of the
FFT engine.

y_valid Output Output complex word valid. Active high. The bit accompanies valid output samples on output busses
y_im and y_re. At any system clock interval while y_valid is active, a complex sample is available on
output busses d_im and d_re.

read_y Input Read FFT output. Active high. If the signal is active, the module puts out the FFT results in a single burst,
one complex word per clock cycle. The host can insert arbitrary breaks into the burst by deactivating the
signal any time during the burst.

pong Output Pong bank of the input buffer is being used by the FFT engine as a working memory.

Table 6 • I/O Signal Description (continued)

Signal Name Direction Description
v4.0 9

CoreFFT Fast Fourier Transform

Figure 5 • Data Load Timing

Figure 6 • FFT Results Output

Figure 7 • Host Controls the Output Sample Rate

clk

load

d_valid

don’t
care

don’t
care

32 5410 N–4d_im, d_re
samples

N–3 N–2 N–1
don’t
care

don’t
care

N–4543210

clk

N–1N–2N–3

y_rdy

read_y

y_valid

y_im, y_re
samples

clk

y_rdy

read_y

210y_im, y_re
samples

NN–2 N–1

y_valid
10 v4.0

CoreFFT Fast Fourier Transform
References
1. L. R. Rabiner and B. Gold, Theory and Application of
Digital Signal Processing, Prentice Hall, 1975.

2. Alan V. Oppenheim and Ronald W. Schafer with John
R. Buck, Discrete-Time Signal Processing, Second Edition,
Prentice Hall, 1998.

A Sample Configuration File
The following is an example configuration file:

inv 0

scale 0

points 256

bits 16

fpga_family pa3

lang verilog

Ordering Information
Order CoreFFT through your local Actel sales
representative. Use the following numbering convention
when ordering: CoreFFT-XX, where XX is listed in Table 7.

Table 7 • Ordering Codes

XX Description

EV Evaluation version

AR RTL for unlimited use on Actel devices

UR RTL for unlimited use and not restricted to Actel devices
v4.0 11

CoreFFT Fast Fourier Transform
Appendix I: Fast Fourier Transform
The FFT is a computationally efficient algorithm for computing a discrete Fourier transform (DFT). The N-point DFT is
defined as

EQ 7

where N is the transform size, or number of points. The inverse N-point DFT is defined as

EQ 8

It is common practice to call the exponential vector rotating factors above the "twiddle factors." Every twiddle factor
contains real and imaginary parts

EQ 9

The butterfly performs the basic FFT computation
according to the following equations:

outP = P + Q × W

EQ 10

outP = P – Q × W

EQ 11

The twiddle factor can be expressed as

W = cos X – j sin X

EQ 12

By substituting the values from EQ 12 and expressing P
and Q in terms of their real and imaginary parts, EQ 10
and EQ 11 become

outP = Pr + jPi + (Qr cos X + Qi sin X) + j(Qi cos X – Qr sin X)
= (Pr + Qr cos X + Qi sin X) + j(Pi + Qi cos X – Qr sin X)

EQ 13

outQ = Pr + jPi – (Qr cos X + Qi sin X) – j(Qi cos X – Qr sin X)
= (Pr – Qr cos X – Qi sin X) + j(Pi – Qi cos X + Qr sin X)

EQ 14

Figure 8 • Radix-2 DIT Butterfly

X k() x n[]e jnk2π–() N⁄

n 0=

N 1–

∑≡ k = 0, 1, 2, ..., N – 1

x n() 1
N
----⎝ ⎠
⎛ ⎞ X k[]e jnk2π() N⁄

k 0=

N 1–

∑= k = 1, 2, 3, ..., N – 1

W Wr jWi– e jnk2π–() N⁄
= =

-1

outP = outPr + j × outPi

outQ = outQr + j × outQiQ = Qr + jQi

W = Wr + jWi

P = Pr + jPi
12 v4.0

CoreFFT Fast Fourier Transform
Figure 9 depicts an example of an 8-point FFT algorithm. The tree contains log2 8 = 3 stages with 8 / 2 = 4 butterflies
calculated at every stage.

Figure 9 • 8-Point FFT Using Decimation-in-Time Algorithm

m

–1

–1

–1

–1

x[2]

x[7]

x[5]

x[3]

x[1]

x[6]

x[4]

x[0]

x[2]

x[7]

x[6]

x[5]

x[4]

x[3]

x[1]

x[0]

xe[2]

xo[3]

xo[2]

xo[1]

xo[0]

xe[3]

xe[1]

xe[0]

W0

W2

W4

W6

W0

W2

W4

W6

W0

W1

W3

W4

W5

W6

W7

W2
m

v4.0 13

CoreFFT Fast Fourier Transform
List of Changes
The following table lists critical changes that were made in the current version of the document.

Datasheet Categories
In order to provide the latest information to designers, some datasheets are published before the data has been fully
characterized. Datasheets are designated as "Product Brief," "Advanced," and "Production." The definitions of these
categories are as follows:

Product Brief
The product brief is a summarized version of an advanced or production datasheet containing general product
information. This brief summarizes specific device and family information for unreleased products.

Advanced
This datasheet version contains initial estimated information based on simulation, other products, devices, or speed
grades. This information can be used as estimates, but not for production.

Unmarked (production)
This datasheet version contains information that is considered to be final.

Previous Version Changes in Current Version (v4.0) Page

v3.0 Fusion was removed from the "Targeted Devices" section. 1

The "Synthesis and Simulation Support" section was updated. 1

FFT size expanded to include 32-, 64-, 128-, and 2,048-point transforms. 1

Input/output data width changed to 8- to 16-bit (configurable). 1

All input and output data widths throughout document now expressed in terms of configurable bit
width b = 8 to 16 bits.

N/A

Table 1 replaced with Table 1 and Table 2. 3–4

EQ 4 was revised. 6

Table 5 updated: removed module_name parameter, added bits parameter, updated points and
fpga_family parameters.

7

Updated the sample in the "A Sample Configuration File" section. 11

v2.0 The "Targeted Devices" section was updated to include Fusion. 1

Table 1 (now Table 1 and Table 2) was updated to include Fusion data. 3
14 v4.0

51700058-2/5.07

Actel Corporation

2061 Stierlin Court
Mountain View, CA
94043-4655 USA
Phone 650.318.4200
Fax 650.318.4600

Actel Europe Ltd.

Dunlop House, Riverside Way
Camberley, Surrey GU15 3YL
United Kingdom
Phone +44 (0) 1276 401 450
Fax +44 (0) 1276 401 490

Actel Japan
www.jp.actel.com

EXOS Ebisu Bldg. 4F
1-24-14 Ebisu Shibuya-ku
Tokyo 150 Japan
Phone +81.03.3445.7671
Fax +81.03.3445.7668

Actel Hong Kong
www.actel.com.cn

Suite 2114, Two Pacific Place
88 Queensway, Admiralty
Hong Kong
Phone +852 2185 6460
Fax +852 2185 6488

www.actel.com

Actel and the Actel logo are registered trademarks of Actel Corporation.
All other trademarks are the property of their owners.

http://www.jp.actel.com
http://www.actel.com.cn
http://www.actel.com

	CoreFFT Fast Fourier Transform
	Product Summary
	Intended Use
	Key Features
	Targeted Devices
	Core Deliverables
	Synthesis and Simulation Support

	Contents
	General Description
	Figure 1 . FFT Module System Block Diagram

	CoreFFT Device Requirements
	Table 1 . CoreFFT Device Utilization and Performance (bit width b = 16)
	Table 2 . CoreFFT Device Utilization and Performance (bit width b = 8)

	Architecture
	Figure 2 . CoreFFT Architecture

	Buffering Scheme
	FFT Computation
	Table 3 . Sample Indices before and after Read Switch for 16-Point FFT Example
	Figure 3 . FFT Computational Sequence
	Table 4 . Minimal Input and Output Sample Rates

	Finite Word Length Considerations
	CoreFFT Generator Parameters
	Table 5 . Core Generator Parameters

	I/O Signal Description
	Figure 4 . CoreFFT I/O Signals
	Table 6 . I/O Signal Description

	I/O Interface and Timing
	Resetting the Module
	Loading Input Data
	Reading Output Data
	Figure 5 . Data Load Timing
	Figure 6 . FFT Results Output
	Figure 7 . Host Controls the Output Sample Rate

	References
	A Sample Configuration File
	Ordering Information
	Table 7 . Ordering Codes

	Appendix I: Fast Fourier Transform
	Figure 8 . Radix-2 DIT Butterfly
	Figure 9 . 8-Point FFT Using Decimation-in-Time Algorithm

	List of Changes
	Datasheet Categories
	Product Brief
	Advanced
	Unmarked (production)

